175 lines
3.9 KiB
Go
175 lines
3.9 KiB
Go
package aoc
|
|
|
|
import (
|
|
"sort"
|
|
)
|
|
|
|
type priorityQueue[T any] struct {
|
|
elems []T
|
|
less func(a, b T) bool
|
|
maxDepth int
|
|
totalEnqueue int
|
|
totalDequeue int
|
|
}
|
|
|
|
// PriorityQueue implements a simple slice based queue.
|
|
// less is the function for sorting. reverse a and b to reverse the sort.
|
|
// T is the item
|
|
// U is a slice of T
|
|
func PriorityQueue[T any](less func(a, b T) bool) *priorityQueue[T] {
|
|
return &priorityQueue[T]{less: less}
|
|
}
|
|
func (pq *priorityQueue[T]) Enqueue(elem T) {
|
|
pq.totalEnqueue++
|
|
|
|
pq.elems = append(pq.elems, elem)
|
|
pq.maxDepth = max(pq.maxDepth, len(pq.elems))
|
|
}
|
|
func (pq *priorityQueue[T]) IsEmpty() bool {
|
|
return len(pq.elems) == 0
|
|
}
|
|
func (pq *priorityQueue[T]) Dequeue() (T, bool) {
|
|
pq.totalDequeue++
|
|
|
|
var elem T
|
|
if pq.IsEmpty() {
|
|
return elem, false
|
|
}
|
|
|
|
sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[i], pq.elems[j]) })
|
|
pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1]
|
|
return elem, true
|
|
}
|
|
|
|
type stack[T any] []T
|
|
|
|
func Stack[T any](a ...T) *stack[T] {
|
|
var s stack[T] = a
|
|
return &s
|
|
}
|
|
func (s *stack[T]) Push(a ...T) {
|
|
if s == nil {
|
|
return
|
|
}
|
|
*s = append(*s, a...)
|
|
}
|
|
func (s *stack[T]) IsEmpty() bool {
|
|
return s == nil || len(*s) == 0
|
|
}
|
|
func (s *stack[T]) Pop() T {
|
|
var a T
|
|
if s.IsEmpty() {
|
|
return a
|
|
}
|
|
a, *s = (*s)[len(*s)-1], (*s)[:len(*s)-1]
|
|
return a
|
|
}
|
|
|
|
// ManhattanDistance the distance between two points measured along axes at right angles.
|
|
func ManhattanDistance[T integer](a, b Point[T]) T {
|
|
return ABS(a[0]-b[0]) + ABS(a[1]-b[1])
|
|
}
|
|
|
|
type pather[C number, N comparable] interface {
|
|
// Neighbors returns all neighbors to node N that should be considered next.
|
|
Neighbors(N) []N
|
|
|
|
// Cost returns
|
|
Cost(a, b N) C
|
|
|
|
// Target returns true when target reached. receives node and cost.
|
|
Target(N, C) bool
|
|
|
|
// OPTIONAL:
|
|
// Add heuristic for running as A* search.
|
|
// Potential(N) C
|
|
|
|
// Seen modify value used by seen pruning.
|
|
// Seen(N) N
|
|
|
|
}
|
|
|
|
// FindPath uses the A* path finding algorithem.
|
|
// g is the graph source that implements the pather interface.
|
|
//
|
|
// C is an numeric type for calculating cost/potential
|
|
// N is the node values. is comparable for storing in visited table for pruning.
|
|
//
|
|
// start, end are nodes that dileniate the start and end of the search path.
|
|
// The returned values are the calculated cost and the path taken from start to end.
|
|
func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, []N, map[N]C) {
|
|
var zero C
|
|
|
|
var seenFn = func(a N) N { return a }
|
|
if s, ok := g.(interface{ Seen(N) N }); ok {
|
|
seenFn = s.Seen
|
|
}
|
|
|
|
var potentialFn = func(N) C { var zero C; return zero }
|
|
if p, ok := g.(interface{ Potential(N) C }); ok {
|
|
potentialFn = p.Potential
|
|
}
|
|
|
|
type node struct {
|
|
cost C
|
|
potential C
|
|
parent *node
|
|
position N
|
|
}
|
|
|
|
newPath := func(n *node) []N {
|
|
var path []N
|
|
for n.parent != nil {
|
|
path = append(path, n.position)
|
|
n = n.parent
|
|
}
|
|
path = append(path, n.position)
|
|
|
|
Reverse(path)
|
|
return path
|
|
}
|
|
|
|
less := func(a, b node) bool {
|
|
return b.cost+b.potential < a.cost+a.potential
|
|
}
|
|
|
|
closed := make(map[N]C)
|
|
open := PriorityQueue(less)
|
|
|
|
open.Enqueue(node{position: start, potential: potentialFn(start)})
|
|
closed[start] = zero
|
|
|
|
// defer func() {
|
|
// Log(
|
|
// "queue max depth = ", open.maxDepth,
|
|
// "total enqueue = ", open.totalEnqueue,
|
|
// "total dequeue = ", open.totalDequeue,
|
|
// "total closed = ", len(closed),
|
|
// )
|
|
// }()
|
|
|
|
for !open.IsEmpty() {
|
|
current, _ := open.Dequeue()
|
|
for _, nb := range g.Neighbors(current.position) {
|
|
next := node{
|
|
position: nb,
|
|
parent: ¤t,
|
|
cost: g.Cost(current.position, nb) + current.cost,
|
|
potential: potentialFn(nb),
|
|
}
|
|
|
|
seen := seenFn(nb)
|
|
cost, ok := closed[seen]
|
|
if !ok || next.cost < cost {
|
|
open.Enqueue(next)
|
|
closed[seen] = next.cost
|
|
}
|
|
|
|
if next.potential == zero && g.Target(next.position, next.cost) {
|
|
return next.cost, newPath(&next), closed
|
|
}
|
|
}
|
|
}
|
|
return zero, nil, closed
|
|
}
|