advent-of-code/search.go
xuu 0dc039f032
All checks were successful
Go Test / build (pull_request) Successful in 36s
chore(day23): solution for day23 pt1/pt2
2024-01-13 11:47:40 -07:00

428 lines
9.2 KiB
Go

package aoc
import (
"maps"
"math/bits"
"sort"
)
type priorityQueue[T any] struct {
elems []*T
less func(a, b *T) bool
maxDepth int
totalEnqueue int
totalDequeue int
}
// PriorityQueue implements a simple slice based queue.
// less is the function for sorting. reverse a and b to reverse the sort.
// T is the item
// U is a slice of T
func PriorityQueue[T any](less func(a, b *T) bool) *priorityQueue[T] {
return &priorityQueue[T]{less: less}
}
func (pq *priorityQueue[T]) Insert(elem *T) {
pq.totalEnqueue++
pq.elems = append(pq.elems, elem)
pq.maxDepth = max(pq.maxDepth, len(pq.elems))
}
func (pq *priorityQueue[T]) IsEmpty() bool {
return len(pq.elems) == 0
}
func (pq *priorityQueue[T]) ExtractMin() *T {
pq.totalDequeue++
var elem *T
if pq.IsEmpty() {
return elem
}
sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[j], pq.elems[i]) })
pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1]
return elem
}
// ManhattanDistance the distance between two points measured along axes at right angles.
func ManhattanDistance[T integer](a, b Point[T]) T {
return ABS(a[0]-b[0]) + ABS(a[1]-b[1])
}
type pather[C number, N comparable] interface {
// Neighbors returns all neighbors to node N that should be considered next.
Neighbors(N) []N
// Cost returns
Cost(a, b N) C
// Target returns true when target reached. receives node and cost.
Target(N, C) bool
// OPTIONAL:
// Add heuristic for running as A* search.
// Potential(N) C
// Seen modify value used by seen pruning.
// Seen(N) N
}
// FindPath uses the A* path finding algorithem.
// g is the graph source that implements the pather interface.
//
// C is an numeric type for calculating cost/potential
// N is the node values. is comparable for storing in visited table for pruning.
//
// start, end are nodes that dileniate the start and end of the search path.
// The returned values are the calculated cost and the path taken from start to end.
func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, []N, map[N]C) {
var zero C
var seenFn = func(a N) N { return a }
if s, ok := g.(interface{ Seen(N) N }); ok {
seenFn = s.Seen
}
var potentialFn = func(N) C { var zero C; return zero }
if p, ok := g.(interface{ Potential(N) C }); ok {
potentialFn = p.Potential
}
type node struct {
cost C
potential C
parent *node
position N
}
newPath := func(n *node) []N {
var path []N
for n.parent != nil {
path = append(path, n.position)
n = n.parent
}
path = append(path, n.position)
Reverse(path)
return path
}
less := func(a, b *node) bool {
return a.cost+a.potential < b.cost+b.potential
}
closed := make(map[N]C)
open := FibHeap(less)
open.Insert(&node{position: start, potential: potentialFn(start)})
closed[start] = zero
for !open.IsEmpty() {
current := open.ExtractMin()
for _, nb := range g.Neighbors(current.position) {
next := &node{
position: nb,
parent: current,
cost: g.Cost(current.position, nb) + current.cost,
potential: potentialFn(nb),
}
seen := seenFn(nb)
cost, ok := closed[seen]
if !ok || next.cost < cost {
open.Insert(next)
closed[seen] = next.cost
}
if next.potential == zero && g.Target(next.position, next.cost) {
return next.cost, newPath(next), closed
}
}
}
return zero, nil, closed
}
type fibTree[T any] struct {
value *T
parent *fibTree[T]
child []*fibTree[T]
mark bool
}
func (t *fibTree[T]) Value() *T { return t.value }
func (t *fibTree[T]) addAtEnd(n *fibTree[T]) {
n.parent = t
t.child = append(t.child, n)
}
type fibHeap[T any] struct {
trees []*fibTree[T]
least *fibTree[T]
count uint
less func(a, b *T) bool
}
func FibHeap[T any](less func(a, b *T) bool) *fibHeap[T] {
return &fibHeap[T]{less: less}
}
func (h *fibHeap[T]) GetMin() *T {
return h.least.value
}
func (h *fibHeap[T]) IsEmpty() bool { return h.least == nil }
func (h *fibHeap[T]) Insert(v *T) {
ntree := &fibTree[T]{value: v}
h.trees = append(h.trees, ntree)
if h.least == nil || h.less(v, h.least.value) {
h.least = ntree
}
h.count++
}
func (h *fibHeap[T]) ExtractMin() *T {
smallest := h.least
if smallest != nil {
// Remove smallest from root trees.
for i := range h.trees {
pos := h.trees[i]
if pos == smallest {
h.trees[i] = h.trees[len(h.trees)-1]
h.trees = h.trees[:len(h.trees)-1]
break
}
}
// Add children to root
h.trees = append(h.trees, smallest.child...)
smallest.child = smallest.child[:0]
h.least = nil
if len(h.trees) > 0 {
h.consolidate()
}
h.count--
return smallest.value
}
return nil
}
func (h *fibHeap[T]) consolidate() {
aux := make([]*fibTree[T], bits.Len(h.count)+1)
for _, x := range h.trees {
order := len(x.child)
// consolidate the larger roots under smaller roots of same order until we have at most one tree per order.
for aux[order] != nil {
y := aux[order]
if h.less(y.value, x.value) {
x, y = y, x
}
x.addAtEnd(y)
aux[order] = nil
order++
}
aux[order] = x
}
h.trees = h.trees[:0]
// move ordered trees to root and find least node.
for _, k := range aux {
if k != nil {
k.parent = nil
h.trees = append(h.trees, k)
if h.least == nil || h.less(k.value, h.least.value) {
h.least = k
}
}
}
}
func (h *fibHeap[T]) Merge(a *fibHeap[T]) {
h.trees = append(h.trees, a.trees...)
h.count += a.count
if h.least == nil || a.least != nil && h.less(a.least.value, h.least.value) {
h.least = a.least
}
}
func (h *fibHeap[T]) find(fn func(*T) bool) *fibTree[T] {
var st []*fibTree[T]
st = append(st, h.trees...)
var tr *fibTree[T]
for len(st) > 0 {
tr, st = st[0], st[1:]
ro := *tr.value
if fn(&ro) {
break
}
st = append(st, tr.child...)
}
return tr
}
func (h *fibHeap[T]) Find(fn func(*T) bool) *T {
if needle := h.find(fn); needle != nil {
return needle.value
}
return nil
}
func (h *fibHeap[T]) DecreaseKey(find func(*T) bool, decrease func(*T)) {
needle := h.find(find)
if needle == nil {
return
}
decrease(needle.value)
if h.less(needle.value, h.least.value) {
h.least = needle
}
if parent := needle.parent; parent != nil {
if h.less(needle.value, parent.value) {
h.cut(needle)
h.cascadingCut(parent)
}
}
}
func (h *fibHeap[T]) cut(x *fibTree[T]) {
parent := x.parent
for i := range parent.child {
pos := parent.child[i]
if pos == x {
parent.child[i] = parent.child[len(parent.child)-1]
parent.child = parent.child[:len(parent.child)-1]
break
}
}
x.parent = nil
x.mark = false
h.trees = append(h.trees, x)
if h.less(x.value, h.least.value) {
h.least = x
}
}
func (h *fibHeap[T]) cascadingCut(y *fibTree[T]) {
if y.parent != nil {
if !y.mark {
y.mark = true
return
}
h.cut(y)
h.cascadingCut(y.parent)
}
}
// FindPath uses the A* path finding algorithem.
// g is the graph source that implements the pather interface.
//
// C is an numeric type for calculating cost/potential
// N is the node values. is comparable for storing in visited table for pruning.
//
// start, end are nodes that dileniate the start and end of the search path.
// The returned values are the calculated cost and the path taken from start to end.
func FindPaths[C integer, N comparable](g pather[C, N], start, end N) ([]C, [][]N) {
var zero C
// closed := make(map[N]bool)
var potentialFn = func(N) C { var zero C; return zero }
if p, ok := g.(interface{ Potential(N) C }); ok {
potentialFn = p.Potential
}
type node struct {
cost C
potential C
parent *node
position N
closed map[N]bool
}
NewPath := func(n *node) []N {
var path []N
for n.parent != nil {
path = append(path, n.position)
n = n.parent
}
path = append(path, n.position)
Reverse(path)
return path
}
less := func(b, a *node) bool {
return b.cost+b.potential < a.cost+a.potential
}
pq := PriorityQueue(less)
pq.Insert(&node{position: start, closed: make(map[N]bool)})
defer func() {
Log("queue max depth = ", pq.maxDepth, "total enqueue = ", pq.totalEnqueue, "total dequeue = ", pq.totalDequeue)
}()
var seenFn = func(a N) N { return a }
if s, ok := g.(interface{ Seen(N) N }); ok {
seenFn = s.Seen
}
var targetFn = func(n N, c C) bool { return true }
if s, ok := g.(interface{ Target(N, C) bool }); ok {
targetFn = s.Target
}
var paths [][]N
var costs []C
for !pq.IsEmpty() {
current := pq.ExtractMin()
cost, potential, n := current.cost, current.potential, current.position
seen := seenFn(n)
if current.closed[seen] {
continue
}
current.closed[seen] = true
if cost > 0 && potential == zero && cost > Max(0, costs...) && targetFn(current.position, cost) {
paths = append([][]N(nil), NewPath(current))
costs = append([]C(nil), cost)
Log("new record = ", cost)
continue
}
for _, nb := range g.Neighbors(n) {
seen := seenFn(nb)
if current.closed[seen] {
continue
}
cost := g.Cost(n, nb) + current.cost
next := &node{
position: nb,
parent: current,
cost: cost,
potential: potentialFn(nb),
closed: maps.Clone(current.closed),
}
// check if path is in open list
if _, open := current.closed[seen]; !open {
next.closed[seen] = false // add to open list
pq.Insert(next)
}
}
}
return costs, paths
}