advent-of-code/day23/main.go
xuu 0dc039f032
All checks were successful
Go Test / build (pull_request) Successful in 36s
chore(day23): solution for day23 pt1/pt2
2024-01-13 11:47:40 -07:00

236 lines
4.4 KiB
Go

package main
import (
"bufio"
_ "embed"
"fmt"
"strings"
aoc "go.sour.is/advent-of-code"
)
var log = aoc.Log
func main() { aoc.MustResult(aoc.Runner(run)) }
type result struct {
valuePT1 int
valuePT2 int
}
func (r result) String() string { return fmt.Sprintf("%#v", r) }
func run(scan *bufio.Scanner) (*result, error) {
var m aoc.Map[int16, rune]
start := Point{0, 0}
target := Point{0, 0}
var text string
for scan.Scan() {
text = scan.Text()
if start == target {
start[1] = int16(strings.IndexRune(text, '.'))
}
m = append(m, []rune(text))
}
target[0] = int16(len(m) - 1)
target[1] = int16(strings.IndexRune(text, '.'))
result := &result{}
result.valuePT1 = search(&graph{m: m, start: start, target: target, neighbors: part1nbs})
result.valuePT2 = search(&graph{m: m, start: start, target: target, neighbors: part2nbs})
return result, nil
}
type Point = aoc.Point[int16]
type Map = aoc.Map[int16, rune]
// diretion of path steps
type direction int8
var (
U = Point{-1, 0}
R = Point{0, 1}
D = Point{1, 0}
L = Point{0, -1}
)
var directions = []Point{U, R, D, L}
var dirIDX = func() map[Point]direction {
m := make(map[Point]direction, len(directions))
for k, v := range directions {
m[v] = direction(k)
}
return m
}()
var arrows = []rune{'^', '>', 'v', '<'}
var arrowIDX = func() map[rune]Point {
m := make(map[rune]Point, len(arrows))
for k, v := range arrows {
m[v] = directions[k]
}
return m
}()
// position on the map
type position struct {
loc Point
direction Point
}
func (p position) step(to Point) position {
return position{p.loc.Add(to), to}
}
// implements FindPath graph interface
type graph struct {
m Map
start Point
target Point
neighbors func(g *graph, current position) []position
}
// Neighbors returns valid steps from given position. if at target returns none.
func (g *graph) Neighbors(current position) []position {
return g.neighbors(g, current)
}
// Cost calculates heat cost to neighbor from map
func (g *graph) Cost(a, b position) int16 {
return 1
}
func (g *graph) Target(a position, c int16) bool {
return a.loc == g.target
}
func (g *graph) Seen(a position) position {
a.direction = Point{}
return a
}
func match[T comparable](match T, lis ...T) bool {
for _, b := range lis {
if b == match {
return true
}
}
return false
}
func search(g *graph) int {
costs, paths := aoc.FindPaths[int16, position](g, position{loc: g.start}, position{loc: g.target})
for i, path := range paths {
log("path length = ", costs[i])
printGraph(g.m, path)
}
return int(aoc.Max(0, costs...))
}
// printGraph with the path overlay
func printGraph(m Map, path []position) {
pts := make(map[Point]position, len(path))
for _, pt := range path {
pts[pt.loc] = pt
}
for r, row := range m {
for c, x := range row {
if _, ok := pts[Point{int16(r), int16(c)}]; ok {
if x == '.' {
fmt.Print("*")
} else {
fmt.Print(string(x))
}
continue
}
fmt.Print(".")
_ = x
// fmt.Print(string(x))
}
fmt.Println("")
}
fmt.Println("")
}
func opposite(d Point) Point {
return directions[(dirIDX[d]+2)%4]
}
func part1nbs(g *graph, current position) []position {
var nbs []position
if current.loc == g.start {
return []position{
{current.loc.Add(D), D},
}
}
if current.loc == g.target {
return nil
}
// only one direction on arrow.
_, r, _ := g.m.Get(current.loc)
if match(r, arrows...) {
to := arrowIDX[r]
if next := current.step(to); g.m.Valid(next.loc) {
_, r, _ := g.m.Get(next.loc)
d := arrows[(dirIDX[to]+2)%4] // flow from opposite direction
if !match(r, rune(d), '#') {
nbs = append(nbs, next)
}
}
return nbs
}
for _, to := range directions {
if next := current.step(to); g.m.Valid(next.loc) {
_, r, _ := g.m.Get(next.loc)
d := arrows[(dirIDX[to]+2)%4] // flow from opposite direction
if !match(r, rune(d), '#') {
nbs = append(nbs, next)
}
}
}
return nbs
}
func part2nbs(g *graph, current position) []position {
var nbs []position
if current.loc == g.start {
return []position{
{current.loc.Add(D), D},
}
}
if current.loc == g.target {
return nil
}
for _, to := range directions {
if next := current.step(to); g.m.Valid(next.loc) {
if next.direction == opposite(current.direction) {
continue
}
_, r, _ := g.m.Get(next.loc)
if r == '#' {
continue
}
nbs = append(nbs, next)
}
}
return nbs
}