package aoc import ( "fmt" "sort" ) type priorityQueue[T any, U []T] struct { elems U less func(a, b T) bool maxDepth int totalEnqueue int } func PriorityQueue[T any, U []T](less func(a, b T) bool) *priorityQueue[T, U] { return &priorityQueue[T, U]{less: less} } func (pq *priorityQueue[T, U]) Enqueue(elem T) { pq.elems = append(pq.elems, elem) pq.totalEnqueue++ pq.maxDepth = max(pq.maxDepth, len(pq.elems)) sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[i], pq.elems[j]) }) } func (pq *priorityQueue[T, I]) IsEmpty() bool { return len(pq.elems) == 0 } func (pq *priorityQueue[T, I]) Dequeue() (T, bool) { var elem T if pq.IsEmpty() { return elem, false } pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1] return elem, true } func ManhattanDistance[T integer](a, b Point[T]) T { return ABS(a[1]-b[1]) + ABS(a[0]-b[0]) } type pather[C number, N any] interface { Neighbors(N) []N Cost(a, b N) C Potential(a, b N) C // OPTIONAL: modify value used by seen pruning. // Seen(N) N } type Path[C number, N any] []N func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, Path[C, N]) { var zero C closed := make(map[N]bool) type node struct { cost C potential C parent *node last N } NewPath := func(n *node) []N { var path []N for n.parent != nil { path = append(path, n.last) n = n.parent } path = append(path, n.last) Reverse(path) return path } less := func(a, b node) bool { return b.cost+b.potential < a.cost+a.potential } pq := PriorityQueue(less) pq.Enqueue(node{last: start}) defer func() { fmt.Println("queue max depth = ", pq.maxDepth, "total enqueue = ", pq.totalEnqueue) }() var seenFn = func(a N) N { return a } if s, ok := g.(interface{ Seen(N) N }); ok { seenFn = s.Seen } for !pq.IsEmpty() { current, _ := pq.Dequeue() cost, potential, n := current.cost, current.potential, current.last seen := seenFn(n) if closed[seen] { continue } closed[seen] = true if cost > 0 && potential == zero { return cost, NewPath(¤t) } for _, nb := range g.Neighbors(n) { seen := seenFn(nb) if closed[seen] { continue } cost := g.Cost(n, nb) + current.cost nextPath := node{ last: nb, parent: ¤t, cost: cost, potential: g.Potential(nb, end), } pq.Enqueue(nextPath) } } return zero, nil }