package aoc import ( "sort" ) type priorityQueue[T any] struct { elems []T less func(a, b T) bool maxDepth int totalEnqueue int totalDequeue int } // PriorityQueue implements a simple slice based queue. // less is the function for sorting. reverse a and b to reverse the sort. // T is the item // U is a slice of T func PriorityQueue[T any](less func(a, b T) bool) *priorityQueue[T] { return &priorityQueue[T]{less: less} } func (pq *priorityQueue[T]) Enqueue(elem T) { pq.totalEnqueue++ pq.elems = append(pq.elems, elem) pq.maxDepth = max(pq.maxDepth, len(pq.elems)) } func (pq *priorityQueue[T]) IsEmpty() bool { return len(pq.elems) == 0 } func (pq *priorityQueue[T]) Dequeue() (T, bool) { pq.totalDequeue++ var elem T if pq.IsEmpty() { return elem, false } sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[i], pq.elems[j]) }) pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1] return elem, true } // ManhattanDistance the distance between two points measured along axes at right angles. func ManhattanDistance[T integer](a, b Point[T]) T { return ABS(a[1]-b[1]) + ABS(a[0]-b[0]) } type pather[C number, N comparable] interface { Neighbors(N) []N Cost(a, b N) C Potential(a, b N) C // OPTIONAL: // Seen modify value used by seen pruning. // Seen(N) N // Target returns true if target reached. // Target(N) bool } // FindPath uses the A* path finding algorithem. // g is the graph source that implements the pather interface. // // C is an numeric type for calculating cost/potential // N is the node values. is comparable for storing in visited table for pruning. // // start, end are nodes that dileniate the start and end of the search path. // The returned values are the calculated cost and the path taken from start to end. func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, []N) { var zero C closed := make(map[N]bool) type node struct { cost C potential C parent *node position N } NewPath := func(n *node) []N { var path []N for n.parent != nil { path = append(path, n.position) n = n.parent } path = append(path, n.position) Reverse(path) return path } less := func(a, b node) bool { return b.cost+b.potential < a.cost+a.potential } pq := PriorityQueue(less) pq.Enqueue(node{position: start}) closed[start] = false defer func() { Log("queue max depth = ", pq.maxDepth, "total enqueue = ", pq.totalEnqueue, "total dequeue = ", pq.totalDequeue) }() var seenFn = func(a N) N { return a } if s, ok := g.(interface{ Seen(N) N }); ok { seenFn = s.Seen } var targetFn = func(a N) bool { return true } if s, ok := g.(interface{ Target(N) bool }); ok { targetFn = s.Target } for !pq.IsEmpty() { current, _ := pq.Dequeue() cost, potential, n := current.cost, current.potential, current.position seen := seenFn(n) if closed[seen] { continue } closed[seen] = true if cost > 0 && potential == zero && targetFn(current.position) { return cost, NewPath(¤t) } for _, nb := range g.Neighbors(n) { seen := seenFn(nb) if closed[seen] { continue } cost := g.Cost(n, nb) + current.cost nextPath := node{ position: nb, parent: ¤t, cost: cost, potential: g.Potential(nb, end), } // check if path is in open list if _, open := closed[seen]; !open { pq.Enqueue(nextPath) closed[seen] = false // add to open list } } } return zero, nil }