Compare commits

...

10 Commits

Author SHA1 Message Date
xuu
37c999e331 Merge branch 'main' into day19
All checks were successful
Go Test / build (pull_request) Successful in 34s
2023-12-29 21:15:28 -07:00
xuu
378e403c1c Merge pull request 'chore: fix uncertanty on day17' (#18) from day17-enhance into main
All checks were successful
Go Bump / bump (push) Successful in 8s
Go Test / build (push) Successful in 34s
Reviewed-on: #18
2023-12-29 21:12:11 -07:00
xuu
06a22511b5 Merge branch 'main' into day17-enhance
All checks were successful
Go Test / build (pull_request) Successful in 36s
2023-12-29 21:11:24 -07:00
xuu
a2563b9d31
chore: fix uncertanty on day17
All checks were successful
Go Test / build (pull_request) Successful in 36s
2023-12-29 21:10:59 -07:00
xuu
3c2ea4ed9e Merge pull request 'chore: fix dijkstra' (#17) from day17-enhance into main
Some checks failed
Go Bump / bump (push) Failing after 8s
Go Test / build (push) Failing after 1m30s
Reviewed-on: #17
2023-12-28 19:01:39 -07:00
xuu
1fac5f7b4d
chore: fix dijkstra
Some checks failed
Go Test / build (pull_request) Failing after 2m39s
2023-12-28 18:59:46 -07:00
xuu
1a3374a557 chore: save day18 (#12)
Some checks failed
Go Bump / bump (push) Successful in 7s
Go Test / build (push) Failing after 10m26s
Reviewed-on: #12
2023-12-27 14:07:32 -07:00
xuu
170fecc9f6 Merge pull request 'chore: add day 17 pt 2' (#16) from day17 into main
Some checks failed
Go Bump / bump (push) Successful in 21s
Go Test / build (push) Failing after 10m27s
Reviewed-on: #16
2023-12-26 13:30:31 -07:00
xuu
58e482b125 Merge branch 'main' into day17
Some checks failed
Go Test / build (pull_request) Failing after 10m28s
2023-12-26 13:30:25 -07:00
xuu
7847d11f95
chore: add day 17 pt 2
Some checks failed
Go Test / build (pull_request) Failing after 10m29s
2023-12-26 13:29:48 -07:00
22 changed files with 1932 additions and 500 deletions

210
aoc_test.go Normal file
View File

@ -0,0 +1,210 @@
package aoc_test
import (
"fmt"
"sort"
"testing"
"github.com/matryer/is"
aoc "go.sour.is/advent-of-code"
)
func TestReverse(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Reverse([]int{1, 2, 3, 4}), []int{4, 3, 2, 1})
}
func TestLCM(t *testing.T) {
is := is.New(t)
is.Equal(aoc.LCM([]int{}...), 0)
is.Equal(aoc.LCM(5), 5)
is.Equal(aoc.LCM(5, 3), 15)
is.Equal(aoc.LCM(5, 3, 2), 30)
}
func TestReadStringToInts(t *testing.T) {
is := is.New(t)
is.Equal(aoc.ReadStringToInts([]string{"1", "2", "3"}), []int{1, 2, 3})
}
func TestRepeat(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Repeat(5, 3), []int{5, 5, 5})
}
func TestPower2(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Power2(0), 1)
is.Equal(aoc.Power2(1), 2)
is.Equal(aoc.Power2(2), 4)
}
func TestABS(t *testing.T) {
is := is.New(t)
is.Equal(aoc.ABS(1), 1)
is.Equal(aoc.ABS(0), 0)
is.Equal(aoc.ABS(-1), 1)
}
func TestTranspose(t *testing.T) {
is := is.New(t)
is.Equal(
aoc.Transpose(
[][]int{
{1, 1},
{0, 0},
{1, 1},
},
),
[][]int{
{1, 0, 1},
{1, 0, 1},
},
)
}
func TestList(t *testing.T) {
is := is.New(t)
lis := aoc.NewList[int](nil)
lis.Add(5, 0)
a, _ := lis.Head().Value()
is.Equal(a, 5)
}
func TestPriorityQueue(t *testing.T) {
is := is.New(t)
type elem [2]int
less := func(a, b elem) bool {
return b[0] < a[0]
}
pq := aoc.PriorityQueue(less)
pq.Enqueue(elem{1, 4})
pq.Enqueue(elem{3, 2})
pq.Enqueue(elem{2, 3})
pq.Enqueue(elem{4, 1})
v, ok := pq.Dequeue()
is.True(ok)
is.Equal(v, elem{4, 1})
v, ok = pq.Dequeue()
is.True(ok)
is.Equal(v, elem{3, 2})
v, ok = pq.Dequeue()
is.True(ok)
is.Equal(v, elem{2, 3})
v, ok = pq.Dequeue()
is.True(ok)
is.Equal(v, elem{1, 4})
v, ok = pq.Dequeue()
is.True(!ok)
is.Equal(v, elem{})
}
func TestSet(t *testing.T) {
is := is.New(t)
s := aoc.Set(1, 2, 3)
is.True(!s.Has(0))
is.True(s.Has(1))
is.True(s.Has(2))
is.True(s.Has(3))
is.True(!s.Has(4))
s.Add(4)
is.True(s.Has(4))
items := s.Items()
sort.Ints(items)
is.Equal(items, []int{1, 2, 3, 4})
}
// func TestGraph(t *testing.T) {
// g := aoc.Graph[int, uint](7)
// g.AddEdge(0, 1, 2)
// g.AddEdge(0, 2, 6)
// g.AddEdge(1, 3, 5)
// g.AddEdge(2, 3, 8)
// g.AddEdge(3, 4, 10)
// g.AddEdge(3, 5, 15)
// g.AddEdge(4, 6, 2)
// g.AddEdge(5, 6, 6)
// // g.Dijkstra(0)
// }
func ExamplePriorityQueue() {
type memo struct {
pt int
score int
}
less := func(a, b memo) bool { return a.score < b.score }
adj := map[int][][2]int{
0: {{1, 2}, {2, 6}},
1: {{3, 5}},
2: {{3, 8}},
3: {{4, 10}, {5, 15}},
4: {{6, 2}},
5: {{6, 6}},
}
pq := aoc.PriorityQueue(less)
visited := aoc.Set([]int{}...)
dist := aoc.DefaultMap[int](int(^uint(0) >> 1))
dist.Set(0, 0)
pq.Enqueue(memo{0, 0})
for !pq.IsEmpty() {
m, _ := pq.Dequeue()
u := m.pt
if visited.Has(u) {
continue
}
visited.Add(u)
du, _ := dist.Get(u)
for _, edge := range adj[u] {
v, w := edge[0], edge[1]
dv, _ := dist.Get(v)
if !visited.Has(v) && du+w < dv {
dist.Set(v, du+w)
pq.Enqueue(memo{v, du + w})
}
}
}
items := dist.Items()
sort.Slice(items, func(i, j int) bool { return items[i].K < items[j].K })
for _, v := range items {
fmt.Printf("point %d is %d steps away.\n", v.K, v.V)
}
// Output:
// point 0 is 0 steps away.
// point 1 is 2 steps away.
// point 2 is 6 steps away.
// point 3 is 7 steps away.
// point 4 is 17 steps away.
// point 5 is 22 steps away.
// point 6 is 19 steps away.
}

View File

@ -30,7 +30,6 @@ func TestExample1(t *testing.T) {
is.Equal(result.sum, 142)
}
func TestExample2(t *testing.T) {
is := is.New(t)
scan := bufio.NewScanner(bytes.NewReader(example2))

View File

@ -36,11 +36,10 @@ func TestSolution(t *testing.T) {
is.NoErr(err)
t.Log(result)
is.True(result.valuePT2 < 87286) // first submission
is.True(result.valuePT2 < 87292) // second submission
is.True(result.valuePT2 < 87287) // third submission
is.True(result.valuePT2 < 87286) // first submission
is.True(result.valuePT2 < 87292) // second submission
is.True(result.valuePT2 < 87287) // third submission
is.Equal(result.valuePT1, 110407)
is.Equal(result.valuePT2, 87273)
}

View File

@ -32,15 +32,15 @@ func run(scan *bufio.Scanner) (*result, error) {
options := make([]int, 2*(rows+cols)+2)
i := 0
for j:=0; j<=rows-1; j++ {
for j := 0; j <= rows-1; j++ {
options[i+0] = runCycle(m, ray{[2]int{j, -1}, RT})
options[i+1] = runCycle(m, ray{[2]int{j, cols}, LF})
i+=2
i += 2
}
for j:=0; j<=cols-1; j++ {
for j := 0; j <= cols-1; j++ {
options[i+0] = runCycle(m, ray{[2]int{-1, j}, DN})
options[i+1] = runCycle(m, ray{[2]int{rows, j}, UP})
i+=2
i += 2
}
// fmt.Println(options)
@ -96,7 +96,6 @@ func (m *Map) Get(p [2]int) rune {
return (*m)[p[0]][p[1]]
}
func runCycle(m Map, r ray) int {
current := r

13
day17/example.txt Normal file
View File

@ -0,0 +1,13 @@
2413432311323
3215453535623
3255245654254
3446585845452
4546657867536
1438598798454
4457876987766
3637877979653
4654967986887
4564679986453
1224686865563
2546548887735
4322674655533

141
day17/input.txt Normal file
View File

@ -0,0 +1,141 @@
222343122415245553243251316124223234134666332224124211645376775672443247264263475261513546522316162532215534453661231232515522214351143451211
422125443253354142511545636246664666565355152246453231651172747635424163415626462753445445312334225221624336126244661514234445544425223533122
131212112421423414125516356342555542626661163526211536677376523712262371162153644117776261645533664544366146314432523222515425314231311544521
131334344235153415214541223454455223563154114267331524774136127715554416125273543276346471735741663351266324144422511534542234341513351345352
314541545523112111131565114333211153312641614321771374726154434476767125613311254537363422511721275135434164664442151263234241114111121141334
435153335153513534132112326653656626231351436457153446433363235565156156723233715473535244413451723176561153261562445512312413413513135513241
235243535523134543445216214455445352435554624255171271225755313626173154112144673146273747537614771377613244145436355342536323123434425211113
132552152551514515631323412533333446136243376366556365574745474652757277632216317677316551253673465513776336664225626313216456312542531241352
311415311541314143614162642634556464574541744355655753776632763662153656721435137347422375344242225276244673434333351454464536453212424421425
453351344131342126143165264626543453632747531417235617257564537542611276314542732241535726557435722271523761452243145343543365433423153132344
424354321333252642533513531241416236636427325176724425161362563217173773414665312244155777552374513335344162564462411154332652126231133233331
433224533551436134314641523151361154615353522622137441214134673454347752343853221756746664765556521762762464233333523123643145626644231443435
243311313556533564523443331214721572253144611715156456321767676655457736255732864573164467712433421256325731135656541255561161224441152415141
511211214252345356344156642436611545463224342452742717585325436325574336455336582448256836717741726221177352616311422112513255165441212221131
244253443163544142511413446172632624762126756145146775348573476557644782564438437852836725866452746165474553473737534665123425113435563332453
232155346345514313654314235557517112176174776332136456448427547478426265844263882743533766568854547675464477171376662424251312612162632514355
424114441642564135264345176163444365144163124128832285838626688224834432458556377773645427653638562736676174576737574642156232566466636441124
543244331213246512421551417132132647763461226245235583478358556478588445828784366325778587856624776125647332126411416416253326543252561355453
513411632124243263566153173255453461117356682265475822242236525286334354628536868726586284535383867467645552277715213631624352612331534144225
234513324414264131211345613416736552211115685767773523645885727834464346536233245827443237753783724626566246761647646475456131431415434413214
132312323255146664114745115275443572754326543474673247542856435836784453584863735676475556838547655484787272216413226712176641452341133361621
324445311115236332563161165371142354332783687877726543524347444677384655338335874866474624655543543466338566764524432633543363631622335214314
452146561262254136627644671525514257523265444635773245326674352228844844533536247443486645863647324742823822411266212747246263222143515531123
323443456261326564347757145611113632534754323645837762327643383533554795688333775647234446628482555868382485343642524356327477353226234131236
323566623463524644662155345214734554448367587534458465333783778836737748873896436675564776876254472473382773351746477537426351164321556552155
411624314463555226413151162214157826642348553426375774773937688356445778864665387877397647688288645648488526683635462551221145364643422311353
632541423444624336526576464457777686224586376437338832948677343497666833369685846994446858346385546773453274862246234173462724342631561154224
353552612514333121215745416727247272652423544685753368594647394695658845883548858535734584333432476287445274435882257755366724515216151451335
532166314441574113623175262414284358754786632434337878589943898388748395969493754638344944356356855723827482463322173565111471477266643531656
116644351623354144151425116542234543365536844644456554366885339853375594997998864974865377578863643354482658652565456654732562467462642222633
425265565534525427323521564886284475834357765873953575557676864375449896735695696945686539933897587748627756658646775714547636543542445454453
535223341313647443711526456446656284686644344893747447894898636684595668686646634379736944587367734766868686525582828566224141647377452234555
363661154543263115262561162483434662346246798873478436638737549697754638834495375733735333645433574877375276735684662372751455123234415466135
233425541263155564422777566657463284532222644739657858356574964435535676435594635788954898867344838753677578547362236357265747553176223645334
516113313346251471245336736766463235445577574763999559496983357388779634999695985559489635746544658453383775634426265623615715313624324613363
325162436525537742416463226466422582452664444569687695737766869564846698477563438574369658749388443473974527623665566388541124766765465414216
246532424466452274271137247462733834328375758733755764656833968984956876697799766884997394499744585594587876625677723447244217267426213343664
164356325132241765153442235356485242287535595375398869579646888545895757975449659944533834737579865398575662388572336243423321763313272155166
563615555622724634724833866443433524894838958833799835363644977657658578544664475868679458747866349983337933858733558557637772576116524351364
415635136113175137578553536586564768643559866697595733497557879468449998976698759797676436636689587877974934738258785642847435574452213713115
611145153512463742256332755487858466583796497738685664885658748948569545664445888744947857868589779795933867483673776857358564657524755764663
235565633417713142257732254688636564985938796475899556649457697557496557466787887559566976984578789695478656638728764846466352277661663613361
621414363456434251274757622526573747939964946885796964745598945469487687577499977988878866574434454755956575894225366755752223145132155653231
345131227736331632753528624737877993467633874573544566489488585879587798745544677645759486797999989373758553748378762622865225676664655255241
211147374365347566347683538644229836375367399779966469889799674657475784657559849567645885568589949973844765649576234674566626355732735375222
123377577423217135757464227844458664877347575684876765589445958984848645558957589999985649678755757487567997496322362828232445742466637677526
664165716524474573468574845478963396633746335989586478477469677874488696466969855457589699479795777786993453995866655558838835473455711456363
645354217411347423778226725287476938984748595969986859957845897656645797969945967774756979786597495489759753559534884668577746471267563715146
641123731653617153523878786635997676839634584755798896844786989789997886975976877949768456676679545757849946967975863276534664727276625714772
115172313432542554343534322666684547383747359496846665858866986576677885977798965677465955688547658777937483437698822255673227856674321437423
412316124234335666538374784464654983653484498444688865778477997658875656978599866558669858496479969969883747883595375635748886535531163731666
126215534552633672772444476653659865338587448788645985679486758768567978966789759768556688875958549895757653789978826784367383554244325537527
252471722164728674273366346869733763887789597776444684764998985757556667899857586887855996664484555498483585754587755247628423684671244526734
616643241174113524686752733973994433637977478579974486858559967566675596878985789668957757945476696698659695977366876442282382768473657366141
433715625621658365787576378559966694694594565764577974766866977599956779776859687775695787565694987685963787977966448785772368444344613132341
542654365337336826434765643879738646353964647955974749776876686976656857777555965796959755779797949695874357763646457888473355582731254116326
461216754736354442526774233456439439344649448885449769679668978899596596779679669865776767595846454969558697477357393642534444663773547743151
242515737157657333842228548349875463457585648494866999577597668698587656558567788999587689857767876885764484449548964773473277753231345166735
654521345226446835568566235799768737539786475876888887965595966585598966967969975867759665599758868667576445864433979732538253832712175534524
115512724255847238822523769738898864344596868468594857859588665686578579798878998656799555798598889485694534558457599364226342568753677472213
111524524557584843753648338688446565566879945758747566968678858898688798787995576956865896565768766698768659698554344826255288878683415552615
775523534424885336584535598468769386864885649976596679699998877966986778776767559667869889767766556949956568378399476985828735885425764761532
617234235723887272453554398456849533986998847969886896697596899979688786876777696866697569685659688446949473894494359678374775655237573674227
731315731775542663287374348536374735499748575465485866966768699899697997797776666566989778755777686999847946948853933693544267753841326646546
722426246522232587267567746363433367778759685487558796666966958776698867986668698666876866775886659846776955633755765593638285378256357434712
174725351666826552875547497865663863549888789874668876958895676696978768897788786788566955869997548858768874638777786742243328886625132571731
611354237262464432722652894576534365759676599966965877965957687768769888968769696957679665987557457444944459839769348686383583662783465636276
435775645554577458385385799454458446877466964957585556758766679978876698869886969697899756896864788684659949467367797467452464686586746747527
326715157438852348356648795697795987947557758498877979757678677886679987996677668886868888557795864545877549896579885386328386465786533157726
453273273424255488663856445483976736667859995777897779896656697978997888787987898778776958957796758748894869487957534497554376546868722122324
224573216435873475783673336556553645879964994546857977556976898696968678989979687688777875655579994576659674597887987885384834758677414425113
356241135726344637684746374354974769468887978766569659956588999669799779786678667886579699675678884889486587434679643859352582448655434457222
466565323122567376356874397989745956794895966548765989989778688799697678896789997978696969665976575677558444868875986457762338452225134143337
362264215456463347238855743779549969969487765646768855768895876877976886666866799968989767688568764586578687569679978449782326532643416155546
671362724447463788282378857469553747694544454845755975585656699878677799678797776968799697957896898878765444867363549353272748888443452166364
632542654733754847425787585687488755596748847964799999775985798869786789699666867675565568797969676665954954838875438688564548862244145146171
333723417316447367476286584684499973896998895898557855668598997699996977697796768788767776689759949696664864687338847464274357245662617625121
732722335132788573566373398994377893654688989578766978658865988697879899789898877758688978567997675756877983739477395738266566365866553224517
147177514747474242267782783587784747967985778647866665897959877679967669667689876857669669767556998597597497483549887695587764775634662343617
152744472376652374322667687839455953897495766449899756875956679668789688868676978978876787578985556849965685833354883453248267842384616432657
217227543612352346346455856939488455758985798868598588765697888677977868879697796686766696678556576857569777547694747435272652536672167123712
744625215616674868776537785459394998859647888485449778786556769796876987889777989756758976977758496584958578978633843394583557326773745211217
353354332722486863626455784779737558677796677557648786868756998567779997999757769989968679778794444858495938377534839655447657354377534537617
351162251452745473452566496983484689397949849568679798775655588857855767769795678968695766898846549555848585493436735966444566758545364773274
546334341147183722785558798496869978864895677895756565879578585766957665575757696669676677769768545948765446463585354842584745473612425647573
235615763364478535767825263879546994497978874484569465769576969857869669765659777668868977865946966479776587987999955433355672374557554754214
162177325222163583735436483646438894396659587698644456886655596959879587966867768858997789444759867989565846639353845278562446263633245724416
324535255452483383635664425784958857579867676497445879975595969977679879855779697798889657664476857564676937793853344868547244368834643131142
121347276513238722442368557665693779499584456766988769868757758795788956896585869778678687556788794995887699638544336543625582864246234111541
357771157266317334828437783465549356369747964978875778866775965679685977988796799568586768676664767564576835757749675276226376757244531177246
336664616327762746632336856333359783983467896468668468658857596888666655696975568657694759566847599666396674475446532283582787232143364371132
644533212754142233635788744897443835653636699755644785889878558985567878858696858779788657475547995487649399794638387758824355331366214575725
222217676717612667687783367437478679946969645869469768494864887557985785659965856994457654994548995554598868743539788752855264561637271324324
356452154463414577848785374339498366535638544946846765677495769785557579699659788879447959897745467466459849543743454246822537753427335371562
343351256333451586862433643627656985753774749546555768998795848687576559887698545798748988498774696693748665338953758884323743215516455337651
511156433162323673647444877388393898578477588665844949845684789786485757669794987664595874795599974455755347864958728824643583546532455523751
156124537652656126446766564883685565845949468648655489495444579455874554846945778967786444756587898964737436487344256846452377111452125151424
515264356113762652852852632686537484556764597765774578755556886965448899978985694964457598494775673883444869546887836668355228143455736361562
263512646525146141226625365446528679473694599878945468469659775468694555669548954648468546665655847884688365888823562232347546127534712221733
631415241711525626678448673422265459959576695493999586674865475767744965494946497644686744965594334353963643655244478563353652375272512755651
233341711151632262167275682837682337594668593834657957999678754665457846558698875995554875885564465558544593484682334467458266753354353656363
222614621174264456548568855775763264556684446457483755666594465554896878549965797747587445795345639937745754468637877328233727712145444373316
551136576466563613374865837744634548656596546959875864946578986489646467467887584454698786369755639588797883757583882864432762672266561742114
311433545766254471655428367633528758869667674337353886355568568977559794557448545869856978986385835684993879575657778365536445625371464633155
223612464456771261577683747465843843667648368983574634838577897765496687876598844667977633334687854753563787465237347324763236171472235426346
411245121677351625555347323585443444334598696449339998397379788744556985684748696646376458494657966586849537253887746577841254462522431254352
344346233632636772414765673728476885836598589955558748979779588656646877576889768598337348786569379345443684386546372358847445714773517622512
155323536362462251246768675874228887274856495665585569666835536867574987794867838438565638693854398377677783434776265675564455312663443423541
331566446775752674417132753235465665833378447847639386878845593445734945386694688999635777683567968539426228468486664337643254264256612362121
243564654224225645722672382353864676463257496747548887493585987546678658735985743376384577953533946647357564447863573451724364472125432653566
342315614225414552353574355435638346877654437484463854837898965395385547754648364866393337683989446882326338262227448314144441743477561422165
513316635431624236671443348277886572254832458877847668477593794644585888563857755634797589885668862754772785358487877315135613177367144545513
463143244643262172563515774358878556748352525757567987986693359853994963575439443448643467386743366524235883462535432614464455735443452664134
365641135114444646623465131227245648484522527682468766639838853356859443957586854538395483886846572325432336737857272623363152162131551135414
416313341334271754356764361744638674522648825426627539586358437534848469663986377869797354638474474353788632454247175546246417444136416435644
224353155431264253763746646441542886447853826453463553364576374757797585985553484899859547773742768633328427884282476754133441524461616242643
141663652631255115673535171111246265842334873322667887864398959494389595436394448689564435578232373254536888873517235136312276614212451451513
124131511566566612435515461237554545678463532355284383577958338477334574565899548354995646534573786226335788675417311262514713363312364535154
423124641651141434731445642547213258886735546328578275442562699767675575457466479427885838355373878586875834224154546773247146645646322335264
412644326632526437735316412561445417468882886666655743427476665574794946797787288666754744722668682487625266217525212752446411411125122652443
533453646465125514654252753512273714342227373732733663723654553522224855828427587263828376724486786422622551345652174733731235533661345526462
431416626556561415256423726364711356216462533453778624228776264745488556248346558664685886255267664468734267241413666377354236365315112133322
115242144546551242654657115464153653733572255453735867582743877872748475375858445224247557346684865447435434415136572343667245436453541641214
211445545143351463615353774344215444543156828652686467572385233427763332873666832447256386848435536242337137777716372765516254142315334335233
345124663224645321264314114673647256557756426376735374628552375257437773764536467386624358238642865332573246663566211211655655563524242452555
314351264524343426135362454521352527263736457447533445374485277766767738682474542365754582457568722614424111744153725635141565436222616112315
525142531331665442641251651451342365334554162254374267466577736465886625773232626738363773743786773241666727445735231415436342625513255235151
543245142256442454155334231734217734761146755176638778856523266374354672783363252424683478557527343237227211135754547531342136551132351221533
241355115114515145351235241342577311663523713245571552423844478483444456674576776374774635321762611146175633416417526461446534624524525232351
413212231435125464562416642131514721163172662635774761555772466528432746222877628357558463622434577676277711461224526611415645224221334321153
424114552242412235261232556412366663124614547557116436567672766285253724382874567666431356536715216512355113511563132462412461555112225422135
322324544333135432235125224253374616723165212337472223432464246434784434268261665524555163346167575177573432151165141342526636661664333152245
533322454514225135644666511564116113743567665217446774461763723457213436114546254524754413534661176555531123216654634336153535555615455221351
345114245113253556125335351622625171466165175642167753751336711273734343723253343654164414153211641676412352766561245653215262351455523141451
142421541514212154334545211465656444644552463442357616615277117635256363621723512341776351424463622726131565431516465664346151153212233245553
444314343434312135211364665242441535527647475416223551347736416724264751235567161762631557147415445546211321423221136662344161541525343455425
513343214231252255165411335621632642146147645756642561211667322537371252122672641421372561555336143123644446534414131135624333443543522413531
151133414553422411155141354122545416221132657162133367556711163132611352466177573117122527412137673543111622364234433423115531533515415532534
344341433553215433332561124312211661162315615567541645475225431414323527474442612165214546553775576346352241352363416414626442233143123431324
312334123334252355135521123323245125516132154636463653576675247514555746177477533534522123547665145656414436131454466514531422525141331441324
221234522113214232242154165523542235561622643243233434644217742623556626525264626677654256257462621433131425222466152534235213545112335523443

137
day17/main.go Normal file
View File

@ -0,0 +1,137 @@
package main
import (
"bufio"
_ "embed"
"fmt"
aoc "go.sour.is/advent-of-code"
)
// var log = aoc.Log
func main() { aoc.MustResult(aoc.Runner(run)) }
type result struct {
valuePT1 int
valuePT2 int
}
func (r result) String() string { return fmt.Sprintf("%#v", r) }
func run(scan *bufio.Scanner) (*result, error) {
var m aoc.Map[rune]
for scan.Scan() {
text := scan.Text()
m = append(m, []rune(text))
}
result := result{}
result.valuePT1 = search(m, 1, 3)
result.valuePT2 = search(m, 4, 10)
return &result, nil
}
func search(m aoc.Map[rune], minSteps, maxSteps int) int {
type direction int8
type rotate int8
const (
CW rotate = 1
CCW rotate = -1
)
var (
U = aoc.Point{-1, 0}
R = aoc.Point{0, 1}
D = aoc.Point{1, 0}
L = aoc.Point{0, -1}
)
var Direction = []aoc.Point{U, R, D, L}
var Directions = make(map[aoc.Point]direction, len(Direction))
for k, v := range Direction {
Directions[v] = direction(k)
}
rows, cols := m.Size()
target := aoc.Point{rows - 1, cols - 1}
type position struct {
loc aoc.Point
direction aoc.Point
steps int
}
step := func(p position) position {
return position{p.loc.Add(p.direction), p.direction, p.steps + 1}
}
rotateAndStep := func(p position, towards rotate) position {
d := Direction[(int8(Directions[p.direction])+int8(towards)+4)%4]
// fmt.Println(towards, Directions[p.direction], "->", Directions[d])
return position{p.loc.Add(d), d, 1}
}
type memo struct {
cost int
position
}
less := func(a, b memo) bool {
if a.cost != b.cost {
return a.cost < b.cost
}
if a.position.loc != b.position.loc {
return b.position.loc.Less(a.position.loc)
}
if a.position.direction != b.position.direction {
return b.position.direction.Less(a.position.direction)
}
return a.steps < b.steps
}
pq := aoc.PriorityQueue(less)
pq.Enqueue(memo{position: position{direction: D}})
pq.Enqueue(memo{position: position{direction: R}})
visited := aoc.Set[position]()
for !pq.IsEmpty() {
current, _ := pq.Dequeue()
if current.loc == target && current.steps >= minSteps {
return current.cost
}
seen := position{loc: current.loc, direction: current.direction, steps: current.steps}
if visited.Has(seen) {
// fmt.Println("visited", seen)
continue
}
visited.Add(seen)
// fmt.Print("\033[2J\033[H")
// fmt.Println("step ", current.steps, " dir ", Directions[current.direction], " steps ", " score ", current.cost, current.loc)
if left := rotateAndStep(current.position, CCW); current.steps >= minSteps && m.Valid(left.loc) {
_, cost, _ := m.Get(left.loc)
// fmt.Println("turn left", current, left)
pq.Enqueue(memo{cost: current.cost + int(cost-'0'), position: left})
}
if right := rotateAndStep(current.position, CW); current.steps >= minSteps && m.Valid(right.loc) {
_, cost, _ := m.Get(right.loc)
// fmt.Println("turn right", current, right)
pq.Enqueue(memo{cost: current.cost + int(cost-'0'), position: right})
}
if forward := step(current.position); current.steps < maxSteps && m.Valid(forward.loc) {
_, cost, _ := m.Get(forward.loc)
// fmt.Println("go forward", current, forward)
pq.Enqueue(memo{cost: current.cost + int(cost-'0'), position: forward})
}
}
return -1
}

41
day17/main_test.go Normal file
View File

@ -0,0 +1,41 @@
package main
import (
"bufio"
"bytes"
"testing"
_ "embed"
"github.com/matryer/is"
)
//go:embed example.txt
var example []byte
//go:embed input.txt
var input []byte
func TestExample(t *testing.T) {
is := is.New(t)
scan := bufio.NewScanner(bytes.NewReader(example))
result, err := run(scan)
is.NoErr(err)
t.Log(result)
is.Equal(result.valuePT1, 102)
is.Equal(result.valuePT2, 94)
}
// func TestSolution(t *testing.T) {
// is := is.New(t)
// scan := bufio.NewScanner(bytes.NewReader(input))
// result, err := run(scan)
// is.NoErr(err)
// t.Log(result)
// is.Equal(result.valuePT1, 843)
// is.Equal(result.valuePT2, 1017)
// }

14
day18/example.txt Normal file
View File

@ -0,0 +1,14 @@
R 6 (#70c710)
D 5 (#0dc571)
L 2 (#5713f0)
D 2 (#d2c081)
R 2 (#59c680)
D 2 (#411b91)
L 5 (#8ceee2)
U 2 (#caa173)
L 1 (#1b58a2)
U 2 (#caa171)
R 2 (#7807d2)
U 3 (#a77fa3)
L 2 (#015232)
U 2 (#7a21e3)

766
day18/input.txt Normal file
View File

@ -0,0 +1,766 @@
R 4 (#0a7a60)
U 8 (#4453b3)
R 6 (#8e4f70)
U 2 (#4453b1)
R 4 (#0feb00)
U 4 (#355591)
R 8 (#2a09c0)
U 4 (#544c71)
R 4 (#472930)
U 2 (#199e33)
R 3 (#3d8df0)
U 5 (#199e31)
R 7 (#45de50)
U 4 (#57a941)
L 7 (#671c70)
U 5 (#5e5e81)
R 4 (#2e9b60)
U 8 (#490881)
L 7 (#1846f0)
U 3 (#304101)
L 4 (#1846f2)
D 2 (#58f3f1)
L 9 (#2e9b62)
D 2 (#56dcd1)
L 2 (#671c72)
D 9 (#275fd1)
L 4 (#76b7b2)
U 9 (#5b9641)
L 4 (#1d3212)
U 10 (#3d1841)
L 3 (#5ad5e2)
D 6 (#010211)
L 5 (#13ec52)
D 8 (#166471)
L 3 (#53ebc0)
D 5 (#0fdba1)
L 4 (#54e450)
D 9 (#440a21)
L 3 (#49b242)
D 5 (#2f0171)
L 6 (#447332)
D 4 (#182561)
L 8 (#1aaaa2)
D 6 (#0996a1)
L 4 (#1c1212)
D 6 (#5780d1)
L 7 (#0fc1d2)
D 7 (#36cb41)
L 3 (#505552)
D 7 (#8d8b81)
R 4 (#2bf742)
D 7 (#152791)
R 5 (#760492)
D 3 (#11a991)
R 3 (#5debc0)
D 10 (#59f211)
L 4 (#66d342)
D 8 (#1fc6b1)
R 4 (#66d340)
D 6 (#72dff1)
L 2 (#3f1b10)
D 4 (#2fca13)
L 10 (#2d0162)
D 5 (#8b5e53)
L 6 (#2d0160)
U 2 (#317053)
L 2 (#650c20)
U 7 (#2bed01)
R 10 (#409ed0)
U 2 (#166713)
L 10 (#939350)
U 6 (#166711)
L 4 (#38a180)
D 3 (#1d95f1)
L 6 (#11ea60)
D 5 (#931dc1)
R 6 (#11bf70)
D 7 (#536051)
L 3 (#995b60)
D 2 (#254e91)
L 3 (#332fd2)
U 6 (#7669f1)
L 3 (#574642)
U 6 (#1778a1)
L 3 (#1a00c2)
U 5 (#2eaa81)
L 3 (#1cf8e2)
U 6 (#0c71a1)
L 6 (#868472)
U 3 (#0a9fd1)
R 9 (#104c02)
U 4 (#082451)
L 7 (#850d02)
U 6 (#082453)
L 7 (#322552)
U 3 (#1339d1)
L 6 (#8e11d2)
U 4 (#6c5691)
R 6 (#1dda10)
U 3 (#25e5c3)
R 7 (#370670)
U 4 (#9324f1)
L 3 (#451030)
U 7 (#1f1021)
L 7 (#0ba3c0)
U 5 (#8a10a3)
L 8 (#67db30)
U 5 (#282473)
L 4 (#0cd350)
U 4 (#25e5c1)
R 3 (#6b4ee0)
U 4 (#333cf1)
R 5 (#02b610)
D 4 (#4e7cc1)
R 3 (#92abb0)
U 5 (#2f6ff1)
R 5 (#483360)
U 5 (#7b1cd1)
L 8 (#3a5d50)
U 3 (#1d2461)
R 8 (#3b2fd0)
U 5 (#630763)
R 6 (#5033c0)
U 3 (#252523)
R 7 (#08eeb0)
U 8 (#516633)
L 7 (#156240)
U 4 (#2db063)
L 3 (#791070)
D 5 (#2920a3)
L 3 (#0dafe0)
U 5 (#4185b3)
L 5 (#7ac0e0)
U 2 (#5a6cd3)
L 2 (#3ca790)
U 7 (#755403)
L 4 (#3b0740)
U 5 (#2004a3)
L 3 (#2db4f0)
U 6 (#602a23)
R 5 (#32c1c0)
D 2 (#000f53)
R 5 (#388360)
D 7 (#24d9e3)
R 4 (#4703a0)
D 3 (#2f1133)
R 3 (#4703a2)
U 11 (#52e853)
R 5 (#278132)
D 11 (#0665e3)
R 3 (#239112)
U 6 (#8f0ad1)
R 5 (#447de2)
U 6 (#8f0ad3)
R 6 (#636122)
U 2 (#187283)
R 3 (#5aae62)
U 10 (#1d8833)
L 5 (#476db0)
U 5 (#136393)
L 7 (#29e6b0)
U 5 (#136391)
R 7 (#3ba060)
U 3 (#635e23)
L 5 (#2042f0)
U 3 (#181643)
L 6 (#5af952)
U 8 (#28d0b1)
L 2 (#4a98f2)
U 9 (#28d0b3)
L 6 (#27a572)
D 3 (#3d7213)
L 4 (#516842)
D 11 (#21ef63)
L 5 (#38e342)
D 2 (#1118b3)
L 3 (#560502)
D 9 (#1118b1)
R 2 (#1c39a2)
D 2 (#303ab3)
R 6 (#716ba0)
D 6 (#780a93)
L 8 (#77ec30)
U 2 (#780a91)
L 3 (#271100)
U 10 (#5882f3)
L 4 (#2050c2)
D 3 (#434843)
L 3 (#7d9572)
D 2 (#3129b3)
L 5 (#21fb12)
D 5 (#8c2c33)
L 4 (#57bf92)
D 6 (#2730b3)
L 4 (#6a3902)
D 8 (#4656a3)
L 5 (#60ac80)
D 4 (#43b863)
R 9 (#3d69a0)
D 8 (#3ca913)
L 2 (#411d80)
D 3 (#725383)
L 8 (#4a98d0)
D 9 (#274553)
L 5 (#580d60)
U 5 (#568223)
L 6 (#473af0)
U 5 (#827593)
L 7 (#251dc2)
U 5 (#0fcea3)
L 8 (#5ae3d2)
U 3 (#4efa11)
R 9 (#389852)
U 2 (#7f7f91)
R 6 (#618342)
U 3 (#441143)
L 7 (#886df2)
U 3 (#26a093)
L 8 (#886df0)
U 4 (#63c7d3)
L 3 (#04f842)
D 10 (#0fcea1)
L 6 (#388e62)
U 10 (#3ae7f3)
L 3 (#2a6880)
U 6 (#3bfd53)
L 6 (#73a0c0)
U 5 (#3bfd51)
L 4 (#0d18a0)
U 2 (#19da93)
L 6 (#120600)
U 8 (#233b53)
L 6 (#2e1050)
U 3 (#4b2aa3)
L 4 (#5f9930)
U 10 (#6e65f1)
R 6 (#1eefa0)
U 9 (#50b9d3)
R 2 (#548ed0)
U 9 (#50b9d1)
R 7 (#8bd9f0)
U 4 (#5ae473)
R 6 (#0b0490)
U 10 (#186891)
R 4 (#764830)
U 7 (#33b0e1)
R 5 (#363c90)
U 8 (#7bd631)
R 7 (#031e30)
U 7 (#095881)
R 3 (#640e50)
D 5 (#02e7f3)
R 7 (#0922f0)
D 7 (#6b7af3)
R 9 (#0922f2)
D 3 (#62e543)
R 3 (#21e320)
U 9 (#5ead81)
R 7 (#01fd70)
D 9 (#3b0cf1)
R 2 (#2758a0)
D 5 (#7279b1)
R 8 (#5c7dc0)
D 7 (#3c8db1)
R 4 (#3c3740)
U 2 (#26b151)
R 6 (#11eb12)
U 4 (#587921)
R 6 (#11eb10)
U 4 (#320051)
R 4 (#038630)
U 3 (#6a2e61)
R 2 (#4ff680)
U 5 (#3c57f1)
R 9 (#0b2440)
U 8 (#497533)
L 6 (#704680)
U 11 (#549113)
R 6 (#23b470)
U 4 (#9e0641)
R 7 (#1aeec0)
D 7 (#4a6331)
R 2 (#547d80)
D 5 (#457a71)
R 9 (#7daa90)
D 4 (#16d7b1)
L 6 (#266810)
D 3 (#363561)
L 5 (#5312b2)
D 4 (#42c301)
R 5 (#9a0952)
D 7 (#42c303)
R 7 (#7d1df2)
D 4 (#51e321)
R 5 (#609422)
D 4 (#3b8f01)
R 6 (#644792)
U 4 (#2d8b11)
R 7 (#22bbc2)
D 7 (#6b39b1)
R 5 (#680e72)
U 2 (#7f9f31)
R 3 (#0e9b52)
U 3 (#3086c1)
R 3 (#5a60c0)
U 6 (#53b6e3)
R 7 (#8117d0)
U 7 (#53b6e1)
R 3 (#2cb930)
U 3 (#1bffd1)
R 6 (#4539f0)
U 8 (#680411)
R 4 (#6032c0)
U 6 (#255061)
R 3 (#5562a0)
U 6 (#088071)
R 3 (#3bf2f0)
U 5 (#52bdb1)
L 6 (#070500)
U 5 (#69e001)
R 6 (#070502)
U 3 (#071051)
R 2 (#036000)
U 4 (#0ea8a1)
R 5 (#05e4d0)
U 3 (#674de1)
R 3 (#804250)
D 6 (#3ffca1)
R 4 (#23dcb2)
D 6 (#9f9841)
L 5 (#45f210)
D 9 (#15efc1)
R 5 (#45f212)
D 4 (#969551)
L 9 (#23dcb0)
D 2 (#41bea1)
L 4 (#2f2a32)
D 4 (#71ffd1)
R 3 (#5c0bb2)
D 7 (#6f3501)
R 4 (#2b0a72)
D 4 (#7b3571)
R 3 (#1c67d2)
U 11 (#42f011)
R 3 (#51ae62)
D 3 (#75fcf1)
R 3 (#1f4742)
D 4 (#2813f1)
R 4 (#3d1812)
D 2 (#2b1d01)
R 11 (#1eb302)
U 3 (#27b0a1)
R 4 (#227b20)
U 5 (#34b7e1)
R 10 (#201220)
U 7 (#0502f3)
R 4 (#5ab7f0)
U 4 (#0502f1)
R 4 (#5d09b0)
U 7 (#504a81)
R 7 (#1e8250)
U 3 (#715aa1)
R 6 (#26d290)
U 6 (#9a12f1)
L 3 (#18be90)
U 8 (#037d11)
L 5 (#647600)
U 3 (#40b983)
L 5 (#04e450)
U 3 (#9a9a43)
L 8 (#04e452)
U 6 (#8af153)
R 8 (#6cbc90)
U 4 (#04d121)
L 4 (#285292)
U 3 (#688d51)
L 6 (#176332)
U 4 (#400a91)
L 5 (#176330)
U 5 (#43def1)
R 2 (#285290)
U 2 (#3e0711)
R 3 (#7eb9c0)
U 7 (#36f611)
R 7 (#666af0)
D 7 (#381b31)
R 3 (#298922)
U 3 (#475671)
R 6 (#977c12)
D 4 (#602d01)
R 6 (#25b0c2)
D 6 (#7ede81)
R 3 (#1d58c2)
D 8 (#873523)
L 9 (#265ae2)
D 3 (#57d663)
R 7 (#1565c2)
D 8 (#06ed11)
R 4 (#a348c2)
D 2 (#06ed13)
R 8 (#12d052)
D 4 (#2d3741)
L 7 (#0ccfd2)
D 3 (#1fcd61)
R 4 (#39a4c2)
D 3 (#44f7f1)
R 6 (#5c3202)
D 8 (#2625c1)
L 8 (#2b08c2)
D 2 (#20d7e1)
L 2 (#67b892)
D 10 (#546471)
R 7 (#484ef2)
D 7 (#49bc91)
R 4 (#91aa72)
U 11 (#499591)
R 3 (#0048b2)
U 7 (#34a7a1)
R 7 (#514600)
U 8 (#1cdc43)
L 7 (#471470)
U 3 (#8c8393)
R 3 (#18a780)
U 5 (#8c8391)
R 3 (#4e6f80)
U 3 (#1cdc41)
R 8 (#428930)
U 5 (#5dcb51)
R 3 (#4b21e2)
U 4 (#0464b1)
R 9 (#850552)
D 8 (#464881)
R 7 (#543852)
D 3 (#2d3a11)
R 3 (#081b22)
D 5 (#0cc731)
R 7 (#6990e0)
D 3 (#79d7b1)
R 3 (#509520)
D 5 (#438571)
R 3 (#27d510)
D 3 (#30d2d3)
L 8 (#1b7a00)
D 5 (#8a0da3)
L 8 (#1b7a02)
U 5 (#027cb3)
L 7 (#350130)
D 8 (#2ff771)
R 7 (#16dc02)
D 2 (#68f1c1)
R 5 (#02f782)
D 6 (#4e2a41)
R 11 (#448e32)
D 5 (#2cfac1)
L 11 (#417502)
D 5 (#2cfac3)
L 4 (#22f022)
U 9 (#1e9f01)
L 5 (#543572)
U 3 (#076e31)
L 6 (#081b20)
U 5 (#1ae851)
L 3 (#823132)
U 9 (#2d7993)
L 4 (#5738f2)
D 8 (#79e273)
L 4 (#5c9ad2)
D 8 (#4ed1b3)
L 3 (#311722)
D 4 (#0d5493)
L 6 (#5d63e0)
D 6 (#178cf3)
L 5 (#75b1b0)
D 5 (#178cf1)
L 6 (#11d550)
D 6 (#44ed03)
L 3 (#76a842)
U 6 (#3b6993)
L 5 (#184892)
D 4 (#5c8163)
L 3 (#14d872)
U 2 (#261a01)
L 5 (#2d01e2)
U 9 (#326ca3)
L 4 (#59ad32)
U 8 (#326ca1)
R 4 (#389ab2)
U 9 (#261a03)
L 4 (#50cb42)
D 4 (#2f8263)
L 5 (#9f3752)
D 6 (#4bb383)
L 4 (#2693f2)
D 4 (#19dca3)
R 4 (#475bc2)
D 6 (#960e13)
L 7 (#0c90a2)
D 8 (#3463d3)
L 6 (#5a82e2)
D 3 (#5a5c43)
R 7 (#120bf2)
D 3 (#5069e3)
R 3 (#4b47a2)
D 6 (#635b63)
R 4 (#66ca10)
U 4 (#1418f1)
R 7 (#1d5470)
D 4 (#1418f3)
R 8 (#66d4f0)
D 5 (#3c5533)
R 4 (#2f6e02)
D 3 (#2cf5e3)
R 4 (#633ec2)
D 7 (#2cf5e1)
R 7 (#5846b2)
D 3 (#4f9d63)
R 4 (#533380)
D 11 (#13c7e3)
R 2 (#222b62)
D 3 (#928ab3)
R 5 (#222b60)
U 5 (#0a4793)
R 5 (#15d3b0)
U 8 (#363fe1)
R 4 (#2feb30)
U 5 (#05d8b1)
R 3 (#39e030)
U 3 (#05d8b3)
R 2 (#3cd780)
U 8 (#02c781)
R 5 (#186452)
D 3 (#37bba1)
R 5 (#9e1232)
D 5 (#58e6f1)
R 5 (#182c30)
D 5 (#072db1)
R 5 (#85e600)
D 4 (#607651)
R 5 (#186450)
D 3 (#0aca91)
L 5 (#0ceb10)
D 5 (#860001)
L 6 (#54c8b0)
U 5 (#393971)
L 4 (#37c390)
D 3 (#1f1433)
L 5 (#3d8790)
D 6 (#353623)
R 4 (#78c830)
D 4 (#6fafa3)
R 6 (#2b0612)
D 5 (#31fff3)
R 7 (#8b49b2)
D 9 (#6f0ee3)
R 5 (#4212e0)
D 6 (#5d11f3)
R 6 (#648340)
D 8 (#393743)
R 6 (#34ddd0)
U 8 (#346fb3)
R 5 (#34fc22)
D 4 (#71c453)
R 6 (#5048f2)
D 4 (#0bb993)
R 4 (#42b9f0)
D 9 (#5cdf83)
R 5 (#42b9f2)
D 3 (#6f3f93)
R 3 (#3dbae2)
D 8 (#495363)
R 9 (#328ba2)
D 3 (#77afa1)
R 5 (#575710)
D 2 (#10d861)
R 4 (#257822)
D 4 (#6efe61)
R 9 (#257820)
D 5 (#521d01)
R 5 (#575712)
D 6 (#494cf1)
L 5 (#683ab2)
D 4 (#5e79c3)
L 3 (#4242a2)
D 4 (#5e79c1)
L 7 (#2c3442)
D 8 (#2fbd23)
L 5 (#636fb2)
D 5 (#63bd53)
L 2 (#299960)
D 6 (#31ea33)
R 3 (#51dfb0)
D 7 (#4e4ec3)
R 4 (#7b7912)
D 5 (#4b4bf3)
R 4 (#54e882)
D 5 (#7d2193)
R 3 (#3b77d2)
D 3 (#826973)
R 8 (#646ec2)
D 4 (#076c63)
L 10 (#674052)
D 6 (#3676b1)
L 9 (#3bd890)
D 4 (#7feb71)
L 3 (#3bd892)
D 3 (#27fc21)
R 8 (#66bba2)
D 8 (#645c73)
R 5 (#43e132)
D 5 (#51d9e3)
R 8 (#43e130)
D 6 (#2827f3)
R 4 (#412c92)
D 5 (#7e7f63)
L 4 (#218122)
D 4 (#546e83)
L 9 (#82f672)
D 8 (#6ed383)
L 3 (#701412)
D 7 (#47de23)
L 5 (#46f912)
D 7 (#0d9ec3)
L 4 (#515142)
D 3 (#4699e3)
L 9 (#2ed562)
U 6 (#00a273)
L 9 (#8d7d12)
U 2 (#6c3a83)
L 7 (#318fa2)
U 7 (#0bd473)
L 2 (#6d5050)
U 10 (#415673)
R 3 (#9e8420)
U 6 (#1ff213)
R 5 (#0c8bf0)
U 2 (#479a11)
R 6 (#977360)
U 5 (#479a13)
L 8 (#250680)
U 2 (#1ff211)
L 3 (#216630)
U 3 (#22d143)
L 3 (#3b4342)
U 7 (#9d4ff3)
L 5 (#43aca2)
U 6 (#29efd3)
L 3 (#5c6a12)
D 11 (#134a73)
L 6 (#2a0982)
U 11 (#444723)
L 4 (#47e2e2)
U 4 (#6855c3)
L 4 (#06a382)
U 4 (#2222e3)
R 3 (#4edc62)
U 6 (#9a2683)
R 6 (#131872)
U 10 (#4f5a23)
R 4 (#858f70)
U 5 (#4d4823)
L 9 (#3f73f0)
U 3 (#46f5a3)
L 4 (#935370)
U 4 (#46f5a1)
L 5 (#3ca140)
U 6 (#07b1e3)
L 5 (#61ecd0)
U 5 (#654743)
L 5 (#3cec42)
U 6 (#30bb83)
R 3 (#920782)
U 6 (#1f9323)
R 8 (#3d8aa2)
U 8 (#7492c3)
R 3 (#301cd2)
U 3 (#32e2f1)
R 4 (#6936f2)
U 6 (#32e2f3)
R 6 (#5112c2)
U 7 (#535b53)
L 10 (#61f4d0)
U 3 (#915863)
L 2 (#51d540)
U 5 (#32dee1)
L 10 (#4ec320)
U 5 (#406bc1)
L 2 (#1b3890)
U 3 (#681181)
L 6 (#35ed60)
D 9 (#153fd3)
L 5 (#323e30)
U 5 (#381ad3)
L 3 (#69a550)
U 3 (#310f63)
L 4 (#2cbb80)
U 5 (#3448a3)
R 6 (#206282)
U 5 (#202ab1)
L 6 (#83af82)
U 4 (#202ab3)
L 4 (#248d02)
D 9 (#28a983)
L 4 (#32cf10)
D 7 (#249d73)
R 4 (#2f5c70)
D 6 (#021c93)
L 7 (#957782)
D 6 (#550e53)
R 5 (#957780)
D 6 (#50bb13)
R 9 (#49b7f2)
U 6 (#096e93)
R 4 (#769452)
D 3 (#6dc543)
R 5 (#2ad352)
D 7 (#167963)
L 10 (#673682)
D 5 (#152883)
L 10 (#13f332)
D 3 (#996721)
L 4 (#4be2a2)
D 4 (#9c2443)
L 4 (#2b83b0)
D 3 (#5d63b3)
L 9 (#9cfd40)
D 7 (#49e793)
L 7 (#0b5422)
D 8 (#5c51b3)
L 2 (#6db152)
D 4 (#215b53)
L 3 (#38dc12)
D 8 (#7dad01)
L 6 (#559e22)
D 3 (#929d23)
L 2 (#0f7560)
D 6 (#448d13)
L 7 (#73a972)
D 2 (#2221c3)
L 3 (#73a970)
D 5 (#53b553)
R 10 (#513590)
D 3 (#293c83)
L 10 (#58e2e0)
D 4 (#54dd21)
L 5 (#1bcdf2)
D 5 (#4b0b71)
L 5 (#1bcdf0)
U 6 (#43b811)
L 5 (#4df1d0)
U 6 (#36d6a3)
R 5 (#3bfb20)
U 5 (#75de61)
L 5 (#1e0ec2)
U 4 (#30b571)
L 7 (#2dfd20)
D 5 (#49ad61)
L 2 (#2dfd22)
D 11 (#715d41)
L 3 (#1e0ec0)
U 4 (#0f2091)
L 4 (#9d29c0)
U 9 (#475a73)
L 2 (#108610)
U 3 (#1e5423)
L 8 (#394192)
U 3 (#0274b3)

89
day18/main.go Normal file
View File

@ -0,0 +1,89 @@
package main
import (
"bufio"
_ "embed"
"fmt"
"strconv"
"strings"
aoc "go.sour.is/advent-of-code"
"golang.org/x/exp/maps"
)
// var log = aoc.Log
func main() { aoc.MustResult(aoc.Runner(run)) }
type result struct {
valuePT1 int
valuePT2 int
}
func (r result) String() string { return fmt.Sprintf("%#v", r) }
func run(scan *bufio.Scanner) (*result, error) {
var vecsPT1 []aoc.Vector
var vecsPT2 []aoc.Vector
for scan.Scan() {
text := scan.Text()
if len(text) == 0 {
continue
}
v, color := fromLine(text)
vecsPT1 = append(vecsPT1, v)
vecsPT2 = append(vecsPT2, fromColor(color))
}
return &result{
valuePT1: findArea(vecsPT1),
valuePT2: findArea(vecsPT2),
}, nil
}
var OFFSET = map[string]aoc.Point{
"R": {0, 1},
"D": {1, 0},
"L": {0, -1},
"U": {-1, 0},
}
var OFFSET_INDEXES = maps.Values(OFFSET)
func fromLine(text string) (aoc.Vector, string) {
v := aoc.Vector{}
s, text, _ := strings.Cut(text, " ")
v.Offset = OFFSET[s]
s, text, _ = strings.Cut(text, " ")
v.Scale = aoc.Atoi(s)
_, text, _ = strings.Cut(text, "(#")
s, _, _ = strings.Cut(text, ")")
return v, s
}
func fromColor(c string) aoc.Vector {
scale, _ := strconv.ParseInt(c[:5], 16, 64)
offset := OFFSET_INDEXES[c[5]-'0']
return aoc.Vector{
Offset: offset,
Scale: int(scale),
}
}
func findArea(vecs []aoc.Vector) int {
shoelace := []aoc.Point{{0, 0}}
borderLength := 0
for _, vec := range vecs {
shoelace = append(shoelace, shoelace[len(shoelace)-1].Add(vec.Point()))
borderLength += vec.Scale
}
return aoc.NumPoints(shoelace, borderLength)
}

42
day18/main_test.go Normal file
View File

@ -0,0 +1,42 @@
package main
import (
"bufio"
"bytes"
"testing"
_ "embed"
"github.com/matryer/is"
)
//go:embed example.txt
var example []byte
//go:embed input.txt
var input []byte
func TestExample(t *testing.T) {
is := is.New(t)
scan := bufio.NewScanner(bytes.NewReader(example))
result, err := run(scan)
is.NoErr(err)
t.Log(result)
is.Equal(result.valuePT1, 62)
is.Equal(result.valuePT2, 952408144115)
}
func TestSolution(t *testing.T) {
is := is.New(t)
scan := bufio.NewScanner(bytes.NewReader(input))
result, err := run(scan)
is.NoErr(err)
t.Log(result)
is.True(result.valuePT1 < 68834) // first attempt too high.
is.Equal(result.valuePT1, 46334)
is.Equal(result.valuePT2, 102000662718092)
}

78
grids.go Normal file
View File

@ -0,0 +1,78 @@
package aoc
type Vector struct {
Offset Point
Scale int
}
func (v Vector) Point() Point {
return v.Offset.Scale(v.Scale)
}
type Point [2]int
func (p Point) Add(a Point) Point {
return Point{p[0] + a[0], p[1] + a[1]}
}
func (p Point) Scale(m int) Point {
return Point{p[0] * m, p[1] * m}
}
func (p Point) Less(b Point) bool {
if p[0] != b[0] {
return p[0] < b[0]
}
return p[1] < b[1]
}
func Transpose[T any](matrix [][]T) [][]T {
rows, cols := len(matrix), len(matrix[0])
m := make([][]T, cols)
for i := range m {
m[i] = make([]T, rows)
}
for i := 0; i < cols; i++ {
for j := 0; j < rows; j++ {
m[i][j] = matrix[j][i]
}
}
return m
}
// NumPoints the number of the points inside an outline plus the number of points in the outline
func NumPoints(outline []Point, borderLength int) int {
// shoelace - find the float area in a shape
sum := 0
for _, p := range Pairwise(outline) {
row1, col1 := p[0][0], p[0][1]
row2, col2 := p[1][0], p[1][1]
sum += row1*col2 - row2*col1
}
area := sum / 2
// pick's theorem - find the number of points in a shape given its area
return (ABS(area) - borderLength/2 + 1) + borderLength
}
type Map[T any] [][]T
func (m *Map[T]) Get(p Point) (Point, T, bool) {
var zero T
if !m.Valid(p) {
return [2]int{0, 0}, zero, false
}
return p, (*m)[p[0]][p[1]], true
}
func (m *Map[T]) Size() (int, int) {
if m == nil || len(*m) == 0 {
return 0, 0
}
return len(*m), len((*m)[0])
}
func (m *Map[T]) Valid(p Point) bool {
rows, cols := m.Size()
return p[0] >= 0 && p[0] < rows && p[1] >= 0 && p[1] < cols
}

56
itertools.go Normal file
View File

@ -0,0 +1,56 @@
package aoc
import (
"strconv"
)
func Atoi(s string) int {
i, _ := strconv.Atoi(s)
return i
}
func Repeat[T any](s T, i int) []T {
lis := make([]T, i)
for i := range lis {
lis[i] = s
}
return lis
}
func Reduce[T, U any](fn func(int, T, U) U, u U, list ...T) U {
for i, t := range list {
u = fn(i, t, u)
}
return u
}
func Reverse[T any](arr []T) []T {
for i := 0; i < len(arr)/2; i++ {
arr[i], arr[len(arr)-i-1] = arr[len(arr)-i-1], arr[i]
}
return arr
}
func SliceMap[T, U any](fn func(T) U, in ...T) []U {
lis := make([]U, len(in))
for i := range lis {
lis[i] = fn(in[i])
}
return lis
}
func SliceIMap[T, U any](fn func(int, T) U, in ...T) []U {
lis := make([]U, len(in))
for i := range lis {
lis[i] = fn(i, in[i])
}
return lis
}
// Pairwise iterates over a list pairing i, i+1
func Pairwise[T any](arr []T) [][2]T {
var pairs [][2]T
for i := range arr[:len(arr)-1] {
pairs = append(pairs, [2]T{arr[i], arr[i+1]})
}
return pairs
}

100
lists.go Normal file
View File

@ -0,0 +1,100 @@
package aoc
import "fmt"
type Node[T any] struct {
value T
pos int
left *Node[T]
}
func (n *Node[T]) add(a *Node[T]) *Node[T] {
if a == nil {
return n
}
if n == nil {
return a
}
n.left = a
return a
}
func (n *Node[T]) Value() (value T, ok bool) {
if n == nil {
return
}
return n.value, true
}
func (n *Node[T]) Position() int {
if n == nil {
return -1
}
return n.pos
}
func (n *Node[T]) SetPosition(i int) {
if n == nil {
return
}
n.pos = i
}
func (n *Node[T]) Next() *Node[T] {
if n == nil {
return nil
}
return n.left
}
func (n *Node[T]) String() string {
if n == nil {
return "EOL"
}
return fmt.Sprintf("node %v", n.value)
}
type List[T any] struct {
head *Node[T]
n *Node[T]
p map[int]*Node[T]
}
func NewList[T any](a *Node[T]) *List[T] {
lis := &List[T]{
head: a,
n: a,
p: make(map[int]*Node[T]),
}
lis.add(a)
return lis
}
func (l *List[T]) Add(value T, pos int) {
a := &Node[T]{value: value, pos: pos}
l.add(a)
}
func (l *List[T]) add(a *Node[T]) {
if l.head == nil {
l.head = a
}
if a == nil {
return
}
l.n = l.n.add(a)
l.p[a.pos] = a
}
func (l *List[T]) Get(pos int) *Node[T] {
return l.p[pos]
}
func (l *List[T]) GetN(pos ...int) []*Node[T] {
lis := make([]*Node[T], len(pos))
for i, p := range pos {
lis[i] = l.p[p]
}
return lis
}
func (l *List[T]) Head() *Node[T] {
return l.head
}

96
math.go Normal file
View File

@ -0,0 +1,96 @@
package aoc
import "cmp"
type uinteger interface {
uint | uint8 | uint16 | uint32 | uint64
}
type sinteger interface {
int | int8 | int16 | int32 | int64
}
type integer interface {
sinteger | uinteger
}
// type float interface {
// complex64 | complex128 | float32 | float64
// }
// type number interface{ integer | float }
// greatest common divisor (GCD) via Euclidean algorithm
func GCD[T integer](a, b T) T {
for b != 0 {
t := b
b = a % b
a = t
}
return a
}
// find Least Common Multiple (LCM) via GCD
func LCM[T integer](integers ...T) T {
if len(integers) == 0 {
return 0
}
if len(integers) == 1 {
return integers[0]
}
a, b := integers[0], integers[1]
result := a * b / GCD(a, b)
for _, c := range integers[2:] {
result = LCM(result, c)
}
return result
}
func Sum[T integer](arr ...T) T {
var acc T
for _, a := range arr {
acc += a
}
return acc
}
func SumFunc[T any, U integer](fn func(T) U, input ...T) U {
return Sum(SliceMap(fn, input...)...)
}
func SumIFunc[T any, U integer](fn func(int, T) U, input ...T) U {
return Sum(SliceIMap(fn, input...)...)
}
func Power2(n int) int {
if n == 0 {
return 1
}
p := 2
for ; n > 1; n-- {
p *= 2
}
return p
}
func ABS(i int) int {
if i < 0 {
return -i
}
return i
}
func Max[T cmp.Ordered](a T, v ...T) T {
for _, b := range v {
if b > a {
a = b
}
}
return a
}
func Min[T cmp.Ordered](a T, v ...T) T {
for _, b := range v {
if b < a {
a = b
}
}
return a
}

46
runner.go Normal file
View File

@ -0,0 +1,46 @@
package aoc
import (
"bufio"
"fmt"
"os"
"path/filepath"
"strings"
)
func Runner[R any, F func(*bufio.Scanner) (R, error)](run F) (R, error) {
if len(os.Args) != 2 {
Log("Usage:", filepath.Base(os.Args[0]), "FILE")
os.Exit(22)
}
input, err := os.Open(os.Args[1])
if err != nil {
Log(err)
os.Exit(1)
}
scan := bufio.NewScanner(input)
return run(scan)
}
func MustResult[T any](result T, err error) {
if err != nil {
fmt.Println("ERR", err)
os.Exit(1)
}
Log("result", result)
}
func Log(v ...any) { fmt.Fprintln(os.Stderr, v...) }
func Logf(format string, v ...any) {
if !strings.HasSuffix(format, "\n") {
format += "\n"
}
fmt.Fprintf(os.Stderr, format, v...)
}
func ReadStringToInts(fields []string) []int {
return SliceMap(Atoi, fields...)
}

35
search.go Normal file
View File

@ -0,0 +1,35 @@
package aoc
import (
"sort"
)
type priorityQueue[T any, U []T] struct {
elems U
less func(a, b T) bool
}
func PriorityQueue[T any, U []T](less func(a, b T) bool) *priorityQueue[T, U] {
return &priorityQueue[T, U]{less: less}
}
func (pq *priorityQueue[T, U]) Enqueue(elem T) {
pq.elems = append(pq.elems, elem)
sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[j], pq.elems[i]) })
}
func (pq *priorityQueue[T, I]) IsEmpty() bool {
return len(pq.elems) == 0
}
func (pq *priorityQueue[T, I]) Dequeue() (T, bool) {
var elem T
if pq.IsEmpty() {
return elem, false
}
pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1]
return elem, true
}
type DS[T comparable] struct {
*priorityQueue[T, []T]
*set[T]
}

59
set.go Normal file
View File

@ -0,0 +1,59 @@
package aoc
import "golang.org/x/exp/maps"
type set[T comparable] map[T]struct{}
func Set[T comparable](arr ...T) set[T] {
m := make(set[T], len(arr))
for _, a := range arr {
m[a] = struct{}{}
}
return m
}
func (m *set[T]) Add(a T) {
(*m)[a] = struct{}{}
}
func (m *set[T]) Items() []T {
return maps.Keys(*m)
}
func (m *set[T]) Has(a T) bool {
var ok bool
_, ok = (*m)[a]
return ok
}
type defaultMap[K comparable, V any] struct {
m map[K]V
d V
}
func DefaultMap[K comparable, V any](d V) *defaultMap[K, V] {
return &defaultMap[K, V]{
make(map[K]V),
d,
}
}
func (m *defaultMap[K, V]) Set(k K, v V) {
m.m[k] = v
}
func (m *defaultMap[K, V]) Get(k K) (V, bool) {
if v, ok := m.m[k]; ok {
return v, true
}
return m.d, false
}
type pair[K, V any] struct {
K K
V V
}
func (m *defaultMap[K, V]) Items() []pair[K, V] {
var items = make([]pair[K, V], 0, len(m.m))
for k, v := range m.m {
items = append(items, pair[K, V]{k, v})
}
return items
}

395
tools.go
View File

@ -1,395 +0,0 @@
package aoc
import (
"bufio"
"cmp"
"fmt"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
)
func Runner[R any, F func(*bufio.Scanner) (R, error)](run F) (R, error) {
if len(os.Args) != 2 {
Log("Usage:", filepath.Base(os.Args[0]), "FILE")
os.Exit(22)
}
input, err := os.Open(os.Args[1])
if err != nil {
Log(err)
os.Exit(1)
}
scan := bufio.NewScanner(input)
return run(scan)
}
func MustResult[T any](result T, err error) {
if err != nil {
fmt.Println("ERR", err)
os.Exit(1)
}
Log("result", result)
}
func Log(v ...any) { fmt.Fprintln(os.Stderr, v...) }
func Logf(format string, v ...any) {
if !strings.HasSuffix(format, "\n") {
format += "\n"
}
fmt.Fprintf(os.Stderr, format, v...)
}
func Reverse[T any](arr []T) []T {
for i := 0; i < len(arr)/2; i++ {
arr[i], arr[len(arr)-i-1] = arr[len(arr)-i-1], arr[i]
}
return arr
}
type uinteger interface {
uint | uint8 | uint16 | uint32 | uint64
}
type sinteger interface {
int | int8 | int16 | int32 | int64
}
type integer interface {
sinteger | uinteger
}
// type float interface {
// complex64 | complex128 | float32 | float64
// }
// type number interface{ integer | float }
// greatest common divisor (GCD) via Euclidean algorithm
func GCD[T integer](a, b T) T {
for b != 0 {
t := b
b = a % b
a = t
}
return a
}
// find Least Common Multiple (LCM) via GCD
func LCM[T integer](integers ...T) T {
if len(integers) == 0 {
return 0
}
if len(integers) == 1 {
return integers[0]
}
a, b := integers[0], integers[1]
result := a * b / GCD(a, b)
for _, c := range integers[2:] {
result = LCM(result, c)
}
return result
}
func ReadStringToInts(fields []string) []int {
return SliceMap(Atoi, fields...)
}
type Node[T any] struct {
value T
pos int
left *Node[T]
}
func (n *Node[T]) add(a *Node[T]) *Node[T] {
if a == nil {
return n
}
if n == nil {
return a
}
n.left = a
return a
}
func (n *Node[T]) Value() (value T, ok bool) {
if n == nil {
return
}
return n.value, true
}
func (n *Node[T]) Position() int {
if n == nil {
return -1
}
return n.pos
}
func (n *Node[T]) SetPosition(i int) {
if n == nil {
return
}
n.pos = i
}
func (n *Node[T]) Next() *Node[T] {
if n == nil {
return nil
}
return n.left
}
func (n *Node[T]) String() string {
if n == nil {
return "EOL"
}
return fmt.Sprintf("node %v", n.value)
}
type List[T any] struct {
head *Node[T]
n *Node[T]
p map[int]*Node[T]
}
func NewList[T any](a *Node[T]) *List[T] {
lis := &List[T]{
head: a,
n: a,
p: make(map[int]*Node[T]),
}
lis.add(a)
return lis
}
func (l *List[T]) Add(value T, pos int) {
a := &Node[T]{value: value, pos: pos}
l.add(a)
}
func (l *List[T]) add(a *Node[T]) {
if l.head == nil {
l.head = a
}
if a == nil {
return
}
l.n = l.n.add(a)
l.p[a.pos] = a
}
func (l *List[T]) Get(pos int) *Node[T] {
return l.p[pos]
}
func (l *List[T]) GetN(pos ...int) []*Node[T] {
lis := make([]*Node[T], len(pos))
for i, p := range pos {
lis[i] = l.p[p]
}
return lis
}
func (l *List[T]) Head() *Node[T] {
return l.head
}
func SliceMap[T, U any](fn func(T) U, in ...T) []U {
lis := make([]U, len(in))
for i := range lis {
lis[i] = fn(in[i])
}
return lis
}
func SliceIMap[T, U any](fn func(int, T) U, in ...T) []U {
lis := make([]U, len(in))
for i := range lis {
lis[i] = fn(i, in[i])
}
return lis
}
func Atoi(s string) int {
i, _ := strconv.Atoi(s)
return i
}
func Repeat[T any](s T, i int) []T {
lis := make([]T, i)
for i := range lis {
lis[i] = s
}
return lis
}
func Sum[T integer](arr ...T) T {
var acc T
for _, a := range arr {
acc += a
}
return acc
}
func SumFunc[T any, U integer](fn func(T) U, input ...T) U {
return Sum(SliceMap(fn, input...)...)
}
func SumIFunc[T any, U integer](fn func(int, T) U, input ...T) U {
return Sum(SliceIMap(fn, input...)...)
}
func Power2(n int) int {
if n == 0 {
return 1
}
p := 2
for ; n > 1; n-- {
p *= 2
}
return p
}
func ABS(i int) int {
if i < 0 {
return -i
}
return i
}
func Transpose[T any](matrix [][]T) [][]T {
rows, cols := len(matrix), len(matrix[0])
m := make([][]T, cols)
for i := range m {
m[i] = make([]T, rows)
}
for i := 0; i < cols; i++ {
for j := 0; j < rows; j++ {
m[i][j] = matrix[j][i]
}
}
return m
}
func Reduce[T, U any](fn func(int, T, U) U, u U, list ...T) U {
for i, t := range list {
u = fn(i, t, u)
}
return u
}
func Max[T cmp.Ordered](a T, v ...T) T {
for _, b := range v {
if b > a {
a = b
}
}
return a
}
func Min[T cmp.Ordered](a T, v ...T) T {
for _, b := range v {
if b < a {
a = b
}
}
return a
}
type PQElem[T any, I integer] struct {
Value T
Priority I
}
type PQList[T any, I integer] []PQElem[T, I]
func (pq PQList[T, I]) Len() int {
return len(pq)
}
func (pq PQList[T, I]) Less(i int, j int) bool {
return pq[i].Priority < pq[j].Priority
}
func (pq PQList[T, I]) Swap(i int, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
var _ sort.Interface = (*PQList[rune, int])(nil)
type PriorityQueue[T any, I integer] struct {
elem PQList[T, I]
}
func (pq *PriorityQueue[T, I]) Enqueue(elem T, priority I) {
pq.elem = append(pq.elem, PQElem[T, I]{elem, priority})
sort.Sort(pq.elem)
}
func (pq *PriorityQueue[T, I]) IsEmpty() bool {
return len(pq.elem) == 0
}
func (pq *PriorityQueue[T, I]) Dequeue() (T, bool) {
var elem T
if pq.IsEmpty() {
return elem, false
}
elem, pq.elem = pq.elem[0].Value, pq.elem[1:]
return elem, true
}
type Vertex[V comparable, I integer] struct {
to V
score I
}
type graph[V comparable, I uinteger] struct {
adj map[V][]Vertex[V, I]
}
func Graph[V comparable, I uinteger](size int) *graph[V, I] {
return &graph[V, I]{
adj: make(map[V][]Vertex[V, I], size),
}
}
func (g *graph[V, I]) AddEdge(u, v V, w I) {
g.adj[u] = append(g.adj[u], Vertex[V, I]{to: v, score: w})
g.adj[v] = append(g.adj[v], Vertex[V, I]{to: u, score: w})
}
func (g *graph[V, I]) Dijkstra(m interface{Get()}, src V) map[V]I {
pq := PriorityQueue[V, I]{}
dist := make(map[V]I, len(g.adj))
visited := make(map[V]bool, len(g.adj))
var INF I
INF = ^INF
pq.Enqueue(src, 0)
dist[src] = 0
for !pq.IsEmpty() {
u, _ := pq.Dequeue()
if _, ok := visited[u]; ok {
continue
}
visited[u] = true
for _, v := range g.adj[u] {
_, ok := visited[v.to]
var du, dv I
if d, inf := dist[u]; !inf {
du = INF
} else {
du = d
}
if d, inf := dist[v.to]; !inf {
dv = INF
} else {
dv = d
}
if !ok && du+v.score < dv {
dist[v.to] = du + v.score
pq.Enqueue(v.to, du+v.score)
}
}
}
return dist
}

View File

@ -1,93 +0,0 @@
package aoc_test
import (
"testing"
"github.com/matryer/is"
aoc "go.sour.is/advent-of-code"
)
func TestReverse(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Reverse([]int{1, 2, 3, 4}), []int{4, 3, 2, 1})
}
func TestLCM(t *testing.T) {
is := is.New(t)
is.Equal(aoc.LCM([]int{}...), 0)
is.Equal(aoc.LCM(5), 5)
is.Equal(aoc.LCM(5, 3), 15)
is.Equal(aoc.LCM(5, 3, 2), 30)
}
func TestReadStringToInts(t *testing.T) {
is := is.New(t)
is.Equal(aoc.ReadStringToInts([]string{"1", "2", "3"}), []int{1, 2, 3})
}
func TestRepeat(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Repeat(5, 3), []int{5, 5, 5})
}
func TestPower2(t *testing.T) {
is := is.New(t)
is.Equal(aoc.Power2(0), 1)
is.Equal(aoc.Power2(1), 2)
is.Equal(aoc.Power2(2), 4)
}
func TestABS(t *testing.T) {
is := is.New(t)
is.Equal(aoc.ABS(1), 1)
is.Equal(aoc.ABS(0), 0)
is.Equal(aoc.ABS(-1), 1)
}
func TestTranspose(t *testing.T) {
is := is.New(t)
is.Equal(
aoc.Transpose(
[][]int{
{1, 1},
{0, 0},
{1, 1},
},
),
[][]int{
{1, 0, 1},
{1, 0, 1},
},
)
}
func TestList(t *testing.T) {
is := is.New(t)
lis := aoc.NewList[int](nil)
lis.Add(5, 0)
a, _ := lis.Head().Value()
is.Equal(a, 5)
}
func TestGraph(t *testing.T) {
g := aoc.Graph[int, uint](7)
g.AddEdge(0, 1, 2)
g.AddEdge(0, 2, 6)
g.AddEdge(1, 3, 5)
g.AddEdge(2, 3, 8)
g.AddEdge(3, 4, 10)
g.AddEdge(3, 5, 15)
g.AddEdge(4, 6, 2)
g.AddEdge(5, 6, 6)
// g.Dijkstra(0)
}