chore(day17): simplify interfaces. add docs
All checks were successful
Go Bump / bump (push) Successful in 12s
Go Test / build (push) Successful in 46s

This commit is contained in:
xuu 2024-01-01 10:59:40 -07:00
parent 0d78959bea
commit fd85530d88
Signed by: xuu
GPG Key ID: 8B3B0604F164E04F

View File

@ -1,44 +1,52 @@
package aoc
import (
"fmt"
"sort"
)
type priorityQueue[T any, U []T] struct {
elems U
type priorityQueue[T any] struct {
elems []T
less func(a, b T) bool
maxDepth int
totalEnqueue int
totalDequeue int
}
func PriorityQueue[T any, U []T](less func(a, b T) bool) *priorityQueue[T, U] {
return &priorityQueue[T, U]{less: less}
// PriorityQueue implements a simple slice based queue.
// less is the function for sorting. reverse a and b to reverse the sort.
// T is the item
// U is a slice of T
func PriorityQueue[T any](less func(a, b T) bool) *priorityQueue[T] {
return &priorityQueue[T]{less: less}
}
func (pq *priorityQueue[T, U]) Enqueue(elem T) {
pq.elems = append(pq.elems, elem)
func (pq *priorityQueue[T]) Enqueue(elem T) {
pq.totalEnqueue++
pq.elems = append(pq.elems, elem)
pq.maxDepth = max(pq.maxDepth, len(pq.elems))
sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[i], pq.elems[j]) })
}
func (pq *priorityQueue[T, I]) IsEmpty() bool {
func (pq *priorityQueue[T]) IsEmpty() bool {
return len(pq.elems) == 0
}
func (pq *priorityQueue[T, I]) Dequeue() (T, bool) {
func (pq *priorityQueue[T]) Dequeue() (T, bool) {
pq.totalDequeue++
var elem T
if pq.IsEmpty() {
return elem, false
}
sort.Slice(pq.elems, func(i, j int) bool { return pq.less(pq.elems[i], pq.elems[j]) })
pq.elems, elem = pq.elems[:len(pq.elems)-1], pq.elems[len(pq.elems)-1]
return elem, true
}
// ManhattanDistance the distance between two points measured along axes at right angles.
func ManhattanDistance[T integer](a, b Point[T]) T {
return ABS(a[1]-b[1]) + ABS(a[0]-b[0])
}
type pather[C number, N any] interface {
type pather[C number, N comparable] interface {
Neighbors(N) []N
Cost(a, b N) C
Potential(a, b N) C
@ -46,15 +54,20 @@ type pather[C number, N any] interface {
// OPTIONAL:
// Seen modify value used by seen pruning.
// Seen(N) N
// Target returns true if target reached.
// Target(N) bool
}
type Path[C number, N any] []N
func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, Path[C, N]) {
// FindPath uses the A* path finding algorithem.
// g is the graph source that implements the pather interface.
// C is an numeric type for calculating cost/potential
// N is the node values. is comparable for storing in visited table for pruning.
// start, end are nodes that dileniate the start and end of the search path.
// The returned values are the calculated cost and the path taken from start to end.
func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, []N) {
var zero C
closed := make(map[N]bool)
visited := make(map[N]bool)
type node struct {
cost C
@ -83,7 +96,7 @@ func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, Path[C,
pq.Enqueue(node{position: start})
defer func() {
fmt.Println("queue max depth = ", pq.maxDepth, "total enqueue = ", pq.totalEnqueue)
Log("queue max depth = ", pq.maxDepth, "total enqueue = ", pq.totalEnqueue, "total dequeue = ", pq.totalDequeue)
}()
var seenFn = func(a N) N { return a }
@ -101,10 +114,10 @@ func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, Path[C,
cost, potential, n := current.cost, current.potential, current.position
seen := seenFn(n)
if closed[seen] {
if visited[seen] {
continue
}
closed[seen] = true
visited[seen] = true
if cost > 0 && potential == zero && targetFn(current.position) {
return cost, NewPath(&current)
@ -112,7 +125,7 @@ func FindPath[C integer, N comparable](g pather[C, N], start, end N) (C, Path[C,
for _, nb := range g.Neighbors(n) {
seen := seenFn(nb)
if closed[seen] {
if visited[seen] {
continue
}